
Design Patterns for Image Processing Algorithm Development
on FPGAs

K. T. Gribbon, D. G. Bailey and C. T. Johnston
Institute of Information Sciences and Technology

Massey University, Palmerston North, New Zealand
k.gribbon@massey.ac.nz , d.g.bailey@massey.ac.nz, c.t.johnston@massey.ac.nz

Abstract— FPGAs are often used as implementation platforms for
real-time image processing applications because their structure
allows them to exploit spatial and temporal parallelism. Such
parallelization is subject to the processing mode and hardware
constraints including limited processing time, limited access to
data and limited resources of the system. These constraints often
force the designer to reformulate the software algorithm in the
process of mapping it to hardware. To aid in the process this
paper proposes the application of design patterns which embody
experience and through reuse provide tools for solving particular
mapping problems. Issues involved in applying design patterns in
this manner are outlined and discussed.

I. INTRODUCTION
Real-time processing is a desirable property of many image

processing applications. However, the required performance can
be difficult to achieve on conventional serial processors. This is
due to several factors such as the large data set represented by
an image, and the complex operations which may need to be
performed on an image. At real-time video rates of 25 frames
per second a single operation performed on every pixel of a 768
by 576 color image (PAL frame) requires 33 million operations
per second. This does not take into account the overhead of
storing and retrieving pixel values. Many image processing
applications require that several operations be performed on
each pixel in the image resulting in a large number of operations
per second.

Field programmable gate arrays (FPGAs) provide an
alternative to using serial processors. Continual advances in the
size and functionality of FPGAs over recent years has resulted
in an increasing interest in their use as implementation
platforms for image processing applications, particularly real-
time video processing [1].

An FPGA consists of a matrix of logic blocks that are
connected by a switching network. Both the logic blocks and
the switching network are reprogrammable allowing application
specific hardware to be constructed, while at the same time
maintaining the ability to change the functionality of the system
with ease. As such, an FPGA offers a compromise between the
flexibility of general purpose processors and the hardware-
based speed of ASICs. Like ASICs, performance gains are
obtained by bypassing the fetch-decode-execute overhead of
general-purpose processors and by exploiting the inherent
parallelism of digital hardware.

A. Exploiting parallelism
Parallelism in image processing algorithms exists in two

major forms [2]: spatial parallelism, in which the image is
divided into multiple sections and processed concurrently, and
temporal parallelism, where the algorithm may be represented
as a time sequence of simple concurrent operations. FPGA
implementations have the potential to be parallel using a
mixture of these two forms. For example, in order to exploit
both forms of parallelism the FPGA could be configured to
partition the image and distribute the resulting sections to
multiple pipelines all of which could process data concurrently.

Pragmatically, the degree of parallelization is subject to the
processing mode and hardware constraints imposed by the
system. Based on previous work [3,4] we have identified the
following constraints: timing (limited processing time),
bandwidth (limited access to data), and resource (limited system
resources) constraints. These constraints are inextricably linked
and manifest themselves in different ways depending on the
processing mode. Managing constraints makes the mapping of
image processing algorithms to hardware more challenging as
section II demonstrates.

B. The mapping process
In this paper, mapping is defined as the process of taking a

conceptual image processing algorithm and specifying it in
some hardware language which can then be subsequently
compiled into a netlist. The mapping process can be performed
at different levels of abstraction.

At the low-level, the designer must manually manage the
constraints by hand. To achieve this the design is often specified
at the register transfer level (RTL) to help maintain better
control of the constraints and allow for flexible optimization.
Our previous work [3,4] corroborates this conclusion and shows
that it is beneficial to maintain a data flow approach at the
register transfer level. Success and significant speed increases
over sequential architectures have also been shown in the
literature for low-level mappings that use this approach [5-7].

The ‘better control’ described is a function of the low-level
programming model used and it follows that the designer must
be prepared to deal directly with the hardware constraints and
their implications. For example, the timing constraint of real-
time processing introduces a number of additional
complications. These include such issues as limited memory
bandwidth, resource conflicts, and the need for pipelining.

Design at this level requires specialist knowledge of the
underlying hardware.

Programming for hardware at the RTL is analogous to
programming in assembly language in the software domain.
Like assembly language, however, design at the RTL becomes
difficult, cumbersome and time consuming for large and
complex algorithms.

At the other end of the spectrum there are high-level
languages and their associated compilers, many of which are
based on popular software languages [8-10]. A common goal of
these languages is to hide low-level details, such as scheduling
and pipelining, from the developer by allowing the compiler to
automatically extract parallelism using optimization techniques
such as loop unrolling to exploit spatial parallelism and
automatic pipelining to exploit temporal parallelism. Thus a
working hardware design may be as simple as making a few
syntactic modifications to an existing program, compiling it and
downloading the resulting configuration file to the FPGA. This
allows a more algorithmic approach to hardware design and
appears to be a perfect solution for image processing, which
already has a large stable code base of well-defined software
algorithms for implementing many common image processing
operations [11]. This also makes it easy for image processing
experts who are used to programming in a software language to
make the transition from algorithmic source code to a gate-level
representation (netlist) without any knowledge of the underlying
low-level issues [12].

The problem with a high-level approach is that the paradigms
of hardware and software are fundamentally different. What
proves prudent for software programming may prove to be
unwise when programming for hardware. For example, a
complex expression such as (1),

 2()f x x x= + (1)

can be directly evaluated in software. In hardware however, the
multiplication and square root are costly to calculate and direct
evaluation may be unwise.

High-level languages for hardware give the illusion of
programming for software which can reinforce the software
‘mindset’. Ref. [13] has stated that the classical serial
architecture is so central to modern computing that the
architecture-algorithm duality is firmly skewed towards this
type of architecture. If direct mapping of a software algorithm
to hardware is performed, compiler optimizations will only
improve the speed of what is fundamentally a sequential-based
algorithm as the implementation results from [12] demonstrate.
Although functionally correct, it may not represent the best
algorithm to use for certain processing modes on an FPGA,
which could benefit from a completely different and more
efficient mapping of the conceptual algorithm to hardware. In
these cases the algorithm needs to be rewritten to meet the
constraints imposed by the hardware and development reverts to
low-level mapping.

C. Design patterns: a more flexible solution
It is clear that there are shortcomings in the mapping process

for both methods described above. Low-level mapping is labor

intensive with little emphasis placed on design reusability. In
high-level mapping the ‘software mindset’ often results in less
than optimal mappings.

Reflection over previous work [3,4,14] has led to the
identification of common challenges, in the mapping process
under imposed constraints. To address this, we propose
applying the concept of design patterns, a common design
methodology in software engineering [15] (and originally
borrowed from architectural engineering [16]), to the
application domain of image processing on FPGAs.

Design patterns, as we envisage applying them, identify
possible techniques for managing the constraints in different
situations and focus on key elements of the solution which may
be reusable in subsequent mappings. Recorded patterns provide
a way to convey design experience in a structured and
informative manner by capturing the essence of the solution.
These generalized solutions are not restricted to a specific
implementation platform or language and therefore, provide a
suitable abstraction that can be applied to emerging languages
and hardware in this fast moving area.

The use of generalized solutions such as design patterns in
the mapping process is not a new concept. Ref. [17] discusses
hardware skeletons which are defined as a parameterized
description of a task-specific architecture. However, design
patterns differ in that they are more abstract. Hardware
skeletons can be directly embodied in code, but only examples
of patterns can be embodied in code. Other researchers in the
field of reconfigurable computing advocate the use of design
patterns but take a broader view for general purpose
reconfigurable computing [18]. Instead, we opt for a narrower
view focused on image processing and the aspects of image
processing that make the mapping process difficult.

As the constraints play a vital role in the mapping process,
section II discusses the constraints, under what circumstances
they are imposed and their effect under different processing
modes. Section III describes design patterns applied to image
processing in more detail and addresses issues of documentation
and categorization. In section IV, the application of design
patterns to an image processing operation, bilinear interpolation
is discussed with respect to the issues illustrated in the paper.
Section V closes with a summary of the paper.

II. BACKGROUND

A. Processing modes
The constraints outlined above manifest themselves in

different ways depending on the processing mode. We believe
there are three modes: stream, offline and hybrid processing.

In stream processing, data is received from the input device
in a raster nature and at video rates. Memory bandwidth
constraints dictate that as much processing as possible is
performed on the data as it arrives.

In offline processing there is no strict timing constraint. This
allows time for an entire image to be written to memory and
thus random access to memory containing the image data. This
mode is the easiest to program, as a direct mapping from a
software algorithm can be used. The speed of execution in most
cases is limited primarily by the memory access speed.

The hybrid case is a mixture of stream and offline processing.
For example, stream processing can be used for image capture
and display while offline processing can be used in order to
provide random access to a region of interest in the captured
image.

B. Constraints
1) Timing constraints: The data rate requirements of the

application impose a timing constraint which in turn drives the
other constraints. If there is no requirement on processing time
then the constraint on timing is relaxed and the system can
revert to offline processing. The constraint on bandwidth is also
eliminated because random access to memory is possible and
desired values in memory can be obtained over a number of
clock cycles with buffering between cycles. Offline processing
in hardware therefore closely resembles the software
programming paradigm; the developer need not worry about
constraints to any great extent.

This is the approach taken by languages that map software
algorithms to hardware. The method applies various automatic
optimization techniques to produce hardware that processes the
input data as fast as possible. Any speedup over an equivalent
implementation on a serial processor is deemed useful. This is
the underlying approach offered by [8].

In contrast to this, when an image processing application
demands real-time processing at video rates, the timing
constraints become crucial. For example, video display
generation has deadlines on the order of one pixel every 40 ns
(VGA output). Stream processing constrains the design into
performing all of the required calculations for each pixel at the
pixel clock rate. Producing one pixel every 40 ns for non-trivial
applications, such as lens distortion correction [3], is difficult
because for each pixel complex expressions must be evaluated.
These can introduce significant propagation delay, which may
easily exceed a single pixel clock cycle. A pipelined approach is
thus needed that accepts an input pixel value from the stream
and outputs a processed pixel value every clock cycle with
several clock cycles of latency, equal to the number of pipeline
stages, between the input and output. This allows several
pipeline stages each for the evaluation of complex expressions
and functions.

Pipelining is a relatively easy optimization to perform, since
it does not require that the algorithm be modified. In some cases
real-time video processing rates are achieved or exceeded when
pipelined architecture is created. However, there is no guarantee
that compiler optimizations will meet the explicit timing
constraints demanded by video rate processing.

Some software algorithms do not translate efficiently to
hardware because they may access memory in a way which
cannot be supported. Subsequently, they do not meet timing
constraints regardless of whether pipelining is performed. Chain
coding is an example of such an operation [14]. This operation
requires random access to memory that cannot be easily
achieved in stream processing mode. The algorithm must be
rewritten without the requirement of random access to memory
using either single or multiple passes through the image [19].

2) Bandwidth constraints: Under stream processing, some
operations require that the image be partly or wholly buffered

because the order that the pixels are required for processing
does not directly correspond to the raster order in which they
are input. This is true for geometric transformations and local
filter operations. Consequently developers are forced to deal
with resource and bandwidth constraints.

Frame buffering requires large amounts of memory. The size
of the frame buffer depends upon the transform itself. In the
worst case (rotation by 90º, for example) the whole image must
be buffered. A single 24-bit (8-bits per color channel) color
image with 768 by 576 pixels requires 1.2 MB of memory.
Unlike software systems that have large pools of memory and
storage available to hold programs and data, FPGAs have
comparatively small amounts of memory and storage (logic
blocks).

The logic blocks themselves can be configured to act like
RAM but this is usually an inefficient use of the logic blocks.

Typically off-chip memory is used for frame buffering but
this may only allow a single access to the frame buffer per clock
cycle, which can be a problem for the many operations that
require simultaneous access to more than one pixel from the
input image (see section IV).

Managing bandwidth constraints can involve reformulating
the software algorithm [14]. Design patterns can address this
issue by aiding in the design of more complex algorithms.

3) Resource constraints: Resource contention arises due to
the finite number of available resources in the system such as
local and off-chip RAM, or other function blocks implemented
on the FPGA. A software system also has finite resources but
the sequential flow of execution removes any possible conflict
for resource access. The addition of an operating system and its
related sub-systems (e.g. memory management sub-system) can
also help automate scheduling for resources.

On an FPGA, if there are a number of concurrent processes
that need access to a particular resource in a given clock cycle
then some form of scheduling must be implemented to avoid
accessing the same resource at the same time. The worst case
involves redesigning the underlying algorithm.

Pipelining results in an increase in logic block usage. This is
caused by the need to construct pipeline stages and registers
rather than being able to reuse the small number of sequential
computing elements (ALU and registers), as can be done with
offline processing. Flip flops introduced by pipelining typically
incur a minimum of additional area on an FPGA, as they are
mapped onto unused flip flops within logic blocks that are
already used for implementing other combinatorial logic in the
design [20].

While the impact of pipeline registers on logic block usage
will be minimal, care must still be taken to make efficient use of
the available logic blocks. Programming without consideration
of the hardware that will be generated has a direct effect on the
speed of the implementation. For example, implementations of
more complex arithmetic operations such as square roots
consume large resources and also increase combinatorial delays
if not pipelined. These are especially important consideration
for designs using small, low cost FPGAs. Design patterns
targeted towards resource constraints can help address some of
these issues.

III. DESIGN PATTERNS
In essence, design patterns are generalized solutions to

recurring problems. Borrowing the simplistic example from
section I, direct evaluation of complex expressions such as (1)
in an FPGA implementation is often an inefficient use of
resources and can lengthen combinatorial delays. One solution
is to pre-calculate values of the expression and store them in a
look-up table (LUT). Therefore, a LUT is a design pattern that
can be used to address timing and to a certain extent, resource
constraints. This solution is general enough to be applied to any
future situations where different complex expressions are
encountered, sharing the original vision of design patterns as
expressed by [16] who first applied them to architectural design:
“Each pattern describes a problem which occurs over and over
again in our environment and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice” ([16], pg. x).

A. Requirements for documentation
Cataloguing design patterns is outside the scope of this paper

but a discussion of the simple LUT design pattern will be useful
in showing the essential elements [15] that a pattern requires.

Firstly, a descriptive pattern name is required to help
recognize, communicate, and use the pattern in design at a
higher level of abstraction. Secondly, a detailed description of
the problem is needed to help recognize when the pattern can be
applied. In the LUT pattern example, if the expression to be
evaluated contains square root operations, which are costly to
implement on an FPGA, then this justifies the use of a LUT.
This would require a discussion on what arithmetic operations
are expensive or inefficient to perform on an FPGA.

The pattern should also contain a description of the elements
which make up the solution itself and their relationships. In
order to maintain suitable abstraction the solution should not
describe a particular implementation, but an example
implementation can be presented if applicable. In the LUT
pattern example, the solution would describe how to go about
creating the entries in the LUT, such as how to calculate and
choose a likely range of input values, rather than how to
instantiate a LUT in a particular design.

Finally, a pattern should also consider the consequences or
trade-offs involved in applying the pattern. In the LUT pattern
example this may involve discussing the loss of precision that is
incurred by replacing the expression with a LUT.

We borrow from [15] the standardized form for the
description of design patterns. Documenting design patterns
helps to convey design experience in a structured way [15].

B. Categorizing design patterns
Design patterns can vary greatly in their level of abstraction.

For example, pipelining is a design pattern that addresses timing
constraints. Pipelining, as mentioned in section II, reduces
propagation delays through combinatorial logic by breaking up
the logic with registers to store intermediate results. This allows
the design to be clocked faster (in order to meet timing
constraints) at the expense of increased latency. This pattern is
quite abstract in its application because pipelining is almost

always used in an FPGA implementation and while the pattern
can provide a “rule of thumb” as to when to pipeline it cannot
specify what parts of a particular algorithm should be pipelined.
On the other hand, the LUT pattern can give more specific
guidelines on when a LUT should be applied, such as when an
expression contains a square root operation. This leads to an
important aspect in our proposal of applying design patterns:
taxonomy.

As there are many design patterns (discovered, documented
and undiscovered) and each can vary in its level of abstraction
and purpose, there needs to be a way to categorize them.
Categorizing should be performed according to the application
domain that design patterns will be applied to. Ref. [16] opted
for a hierarchical categorization, viewing the connection
between patterns as a linear and dependent sequence of
categories from the general (e.g. towns) to the specific (e.g.
rooms). This hierarchical categorization suits the architectural
domain as rooms only exists in buildings, buildings only exist in
neighborhoods, and neighborhoods only exist in towns. Ref.
[15] on the other hand have opted for classification according to
purpose, which reflects what a pattern does. Thus a pattern can
have creational, structural, or behavioral purpose depending on
what effect the pattern has on the (programming) object. This
suits the object-oriented programming paradigm of the software
engineering domain.

Thus, we propose categorizing design patterns according to
the constraints that they address because in the application
domain of image processing we are concerned with how to
manage the constraints effectively during the mapping process.

One of the goals in design pattern categorization is to
investigate the relationships between the various design
patterns. These relationships include collaborations,
alternatives, and dependencies between patterns. A design
pattern can also encapsulate other design patterns as section IV
will demonstrate. In this sense design patterns are hierarchical
but it is less useful for us to categorize them this way.

Design patterns as we envisage applying them, are governed
by underlying principles specific to image processing and
reconfigurable computing. An understanding of the underlying
principles in the application domain is helpful in the discovery
and categorization of design patterns. For example, one
principle is that the width of memory in off-chip RAM is
generally greater than the width of a pixel value. It is therefore
possible to pack more than one pixel into a given memory
location (e.g. a 32-bit memory location can store two 16-bit
RGB pixels or four 8-bit gray-scale pixels if color processing is
not required). This pattern can be used to address bandwidth
constraints, as more than one pixel can be obtained per access.

Where possible design patterns should cover a range of
possible solutions so a user can base their choice of patterns in
the context of how the problem is presented and the imposed
constraints. In order to show how knowledge of design patterns
can simplify the design process and encourage reusability, an
example will be undertaken.

IV. EXAMPLE
Spatial transformations, such as digital zooming or rotation

redefine the “arrangement” of pixels on the image plane. The
coordinates for new pixels in the transformed image are rarely
integer values and are generally located in “between” pixels in
the original image. To calculate the values of these new pixels
bilinear interpolation is often used as it provides a satisfactory
compromise between computational efficiency and image
quality [21]. The algorithm obtains the pixel value by taking a
weighted sum of the pixel values of the four nearest neighbors
surrounding the calculated location as shown below in Fig. 1
and (2):

Figure 1. Bilinear interpolation neighborhood

() 1p (1)(1) (1)

1(1) 1 1

i i
f f f f

i i

i i
f f f f

i i

x xI x y I y x Iy y
x xx y I x y Iy y

   +   = − − + −            
   +   − +   + +         

 (2)

Obtaining the pixel values of the neighborhood in Fig. 1 is
trivial to perform in offline processing or in software as values
can be retrieved over a number of clock cycles. However, the
constraints imposed by a real-time implementation can
complicate the design. As section II discussed, video rate
processing for the display requires that one pixel be produced
every 40 ns and for each pixel (2) must be evaluated. This can
introduce significant propagation delay. Simultaneous access to
four pixels in the input image is also required every clock cycle
according to (2). This introduces a bandwidth constraint as
potentially only a single access can be made to the frame buffer
per clock cycle.

In addition to these “hardware” based constraints, the
problem itself introduces additional constraints as the
presentation of the input data is dependent on the spatial
transform itself. For example, in simple zooming operations the
calculated coordinates will be presented in a raster-based
fashion. Pure rotation operations introduce additional
complications because the coordinates now appear on straight
lines at the angle of rotation, one pixel apart. To address all of
these problems design patterns that can be applied.

As detailed in section II, spatial transforms require frame
buffering. To achieve this we can apply a design pattern for
frame buffering. The applied pattern will depend on the memory
architecture of the system. Possible patterns to deal with frame
buffering are the use multi-port RAM, multiple RAM banks in
parallel or using a faster RAM clock to read multiple locations
in a single pixel clock cycle. While each of these frame
buffering patterns also aids in the alleviation of the memory
bandwidth constraint by allowing multiple accesses, the
consequences of using any of these patterns must also be
weighed. Multi-port RAM is specialized and expensive. The use
of multiple banks is clumsy because the added redundancy is
expensive in both cost and space. Finally, using a faster RAM
clock requires high speed memory and introduces
synchronization issues.

In many cases we apply the design pattern of double frame
buffering as our hardware system only provides single-port
access to off-chip memory. Effectively this pattern uses two
frame buffers allowing the stream from the camera to be written
to one bank while a stream from the other bank is read and
processed. When the stream from the camera reaches the end of
a frame the roles of the banks are swapped.

To overcome timing constraints the pipelining design pattern
can be applied. This allows several pipeline stages for the
calculation of (2).

Problem knowledge, however, can somewhat alleviate the
requirements on the bandwidth constraint. Bilinear interpolation
in (2) is effectively a 2×2 window filter with weights that vary
according to the location within the image. As the window is
shifted by a single pixel each time half of the neighborhood
values can be obtained from the previous calculation. A third
pixel value can be obtained from the frame buffer, leaving the
last pixel value unknown.

Depending on the application requirements and hardware
specifications, the pack memory pattern detailed in the previous
section can be used to help obtain the final pixel value. One of
the tradeoffs is that in general it requires the use of lower color
depth, such as 16-bit RGB as opposed to 24-bit RGB, or gray-
scale processing, which may be prohibitive for some
applications. The pattern can enable more than one pixel to be
retrieved in a single access.

Alternatively, recognition that bilinear interpolation is
effectively a 2×2 window filter, as mentioned above, allows the
application of a row buffering design pattern as shown below in
Fig 2:

Figure 2. Bilinear interpolation using row buffering design pattern which can
also be applied to window filtering

In Fig 2. input data from the previous row is buffered using a
shift register (or circular memory buffer) for when the window
is scanned along subsequent lines. Pixel values for interpolation
can now be obtained from the previous calculation, the frame
buffer and a single row buffer. This design pattern can also be
reapplied to any window filtering operation.

“Harder” spatial transforms typical of applications such as
lens distortion correction make the on-demand row buffering
design pattern in Fig 2. ineffective because the coordinate path
may be curved and the coordinate step size may not be uniform.
To overcome this we can use a design pattern that utilizes the
principle that (in display generation) there are more clock cycles
on a row and frame than there are pixels, due to the horizontal
and vertical blanking periods. This gives rise to the preloading
buffer design pattern. During the blanking period of the display,
where processing is stalled, a separate process can be used to
preload a buffer with pixel values for the next row from the
frame buffer. The pixel values could be preloaded in some
“dumb” fashion (i.e. row-by-row) or according to certain
conditions, such as only values that are likely to be used in
subsequent calculations, in order to maximize buffer efficiency.

This example demonstrates that trivial software algorithms
like bilinear interpolation are quickly complicated by real-time
processing constraints. A hardware implementation reveals
many considerations such as problem constraints, processing
modes and available hardware, leading to a range of design
patterns. Choosing a design pattern that meets all these
considerations for the particular problem at hand is the key to an
efficient hardware implementation.

V. SUMMARY
FPGAs are often used as implementation platforms for real-

time image processing applications because their structure can
exploit spatial and temporal parallelism.

High-level languages and compilers which automatically
extract parallelism from the code do not always produce an
efficient mapping to hardware. The code is usually adapted
from a software implementation and thus has the disadvantage
that the resulting implementation is based fundamentally on a
serial algorithm. Low-level mapping can overcome the
‘software mindset’ but as a consequence the designer must now
deal more closely with the constraints, which is labor intensive
and places little emphasis on reusability.

Design patterns offer an answer to this by directly addressing
the common challenges and imposed constraints of the mapping
process and focusing on key elements of the solution which may
be reusable in subsequent mappings. Recorded patterns also
help convey design experience in a structured manner.

ACKNOWLEDGMENT
The authors would like to acknowledge the Celoxica

University Programme for generously providing the DK3
Design Suite.

REFERENCES
[1] Hutchings, B. and Villasenor, J., “The Flexibility of Configurable

Computing,” IEEE Signal Processing Magazine, vol. 15, pp. 67-84,
September 1998.

[2] Downton, A. and Crookes, D., “Parallel Architectures for Image
Processing,” IEE Electronics & Communication Engineering Journal,
vol. 10, pp. 139-151, June 1998.

[3] Gribbon, K. T., Johnston, C. T., and Bailey, D. G., “A Real-time FPGA
Implementation of a Lens Distortion Correction Algorithm with Bilinear
Interpolation,” Proceedings of the Image and Vision Computing New
Zealand Conference 2003, Massey University, Palmerston North, New
Zealand, pp. 408-413, November 2003.

[4] Gribbon, K. T. and Bailey, D. G., "A Novel Approach to Real-time
Bilinear Interpolation," Second IEEE International Workshop on
Electronic Design, Test and Applications, Perth, Australia, pp. 126-131,
January 2004.

[5] Alves de Barro, M. and Akil, M., "Low Level Image Processing
Operators on FPGA: Implementation Examples and Performance
Evaluation," Proceedings of the 12th IAPR International Conference on
Pattern Recognition , Jerusalem, Israel, pp. 262-267, October 1994.

[6] Woods, R., Trainor, D., and Heron, J.-P., “Applying an XC6200 to real-
time image processing,” IEEE Design & Test of Computers, vol. 15, no.
1, pp. 30-38, 1998.

[7] Benkrid, K., Crookes, D., and Benkrid, A., “Design and implementation
of a novel algorithm for general purpose median filtering on FPGAs,”
IEEE International Symposium on Circuits and Systems, pp. 425-428,
2002.

[8] Najjar, W. A., Böhm, W., Draper, B. A., Hammes, J., Rinker, R.,
Beveridge, J. R., Chawathe, M., and Ross, C., “High-level language
abstraction for reconfigurable computing,” IEEE Computer, vol. 36, pp.
63-69, August 2003.

[9] Haldar, M., Nayak, A., Choudhary, A., and Banerjee, P., “A system for
synthesizing optimized FPGA hardware from MATLAB ,” Proceedings
of the 2001 IEEE/ACM international conference on Computer-aided
design, San Jose, California, pp. 314-319, 2001.

[10] Crookes, D. , Benkrid, K., Bouridane, A., Alotaibi, K., and Benkrid, A.,
“Design and Implementation of a High Level Programming Environment
for FPGA-Based Image Processing,” IEE Proceedings-Vision Image and
Signal Processing, vol. 147, pp. 377-384, August 2000.

[11] Webb, J. A. , “Steps toward architecture-independent image processing,”
IEEE Computer, vol. 25, no. 2, pp. 21-31, 1992.

[12] Alston, I. and Madahar, B., “From C to netlists: hardware engineering
for software engineers?” IEE Electronics & Communication Engineering
Journal, vol. pp. 165-173, August 2002.

[13] Offen, R. J. VLSI Image Processing, London: Collins, 1985.
[14] Johnston, C. T., Gribbon, K. T., and Bailey, D. G., “Implementing Image

Processing Algorithms on FPGAs,” Proceedings of the Eleventh
Electronics New Zealand Conference, Palmerston North, New Zealand,
pp. 118-123, November 2004.

[15] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software, United States of
America: Addison-Wesley Publishing Company, 1995.

[16] Alexander, C., Ishikawa, S., Silverstein, M., Jacobsen, M., Fiksdahl-
King, I., and Angel, S. A Pattern Language, New York: Oxford
University Press, 1977.

[17] Benkrid, K. , Crookes, D., and Benkrid, A., “Towards a general
framework for FPGA based image processing using hardware skeletons,”
Parallel Computing, vol. 28, pp. 1141-1154, August 2002.

[18] DeHon, A., Adams, J., DeLorimier, M., Kapre, N., Matsuda, Y., Naeimi,
H., Vanier, M., and Wrighton, M., “Design patterns for reconfigurable
computing,” 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 13-23, 2004.

[19] Zingaretti, P., Gasparroni, M., and Vecci, L., “Fast chain coding of
region boundaries,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 4, pp. 407-415, 1998.

[20] Xilinx, Inc. Xilinx ISE 7 Software Manuals and Help. 2005.
[21] Gonzalez, R. C. and Woods, R. E. Digital Image Processing, Upper

Saddle River, New Jersey: Prentice-Hall, 2002.

	Print:
	Next Page:
	Go Back:
	Go Main:
	Copyright info:

