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Abstract— FPGAs are often used as implementation platforms for 
real-time image processing applications because their structure 
allows them to exploit spatial and temporal parallelism. Such 
parallelization is subject to the processing mode and hardware 
constraints including limited processing time, limited access to 
data and limited resources of the system. These constraints often 
force the designer to reformulate the software algorithm in the 
process of mapping it to hardware. To aid in the process this 
paper proposes the application of design patterns which embody 
experience and through reuse provide tools for solving particular 
mapping problems. Issues involved in applying design patterns in 
this manner are outlined and discussed. 

I. INTRODUCTION 
Real-time processing is a desirable property of many image 

processing applications. However, the required performance can 
be difficult to achieve on conventional serial processors. This is 
due to several factors such as the large data set represented by 
an image, and the complex operations which may need to be 
performed on an image. At real-time video rates of 25 frames 
per second a single operation performed on every pixel of a 768 
by 576 color image (PAL frame) requires 33 million operations 
per second. This does not take into account the overhead of 
storing and retrieving pixel values. Many image processing 
applications require that several operations be performed on 
each pixel in the image resulting in a large number of operations 
per second. 

Field programmable gate arrays (FPGAs) provide an 
alternative to using serial processors. Continual advances in the 
size and functionality of FPGAs over recent years has resulted 
in an increasing interest in their use as implementation 
platforms for image processing applications, particularly real-
time video processing [1].  

An FPGA consists of a matrix of logic blocks that are 
connected by a switching network. Both the logic blocks and 
the switching network are reprogrammable allowing application 
specific hardware to be constructed, while at the same time 
maintaining the ability to change the functionality of the system 
with ease. As such, an FPGA offers a compromise between the 
flexibility of general purpose processors and the hardware-
based speed of ASICs. Like ASICs, performance gains are 
obtained by bypassing the fetch-decode-execute overhead of 
general-purpose processors and by exploiting the inherent 
parallelism of digital hardware. 

A. Exploiting parallelism 
Parallelism in image processing algorithms exists in two 

major forms [2]: spatial parallelism, in which the image is 
divided into multiple sections and processed concurrently, and 
temporal parallelism, where the algorithm may be represented 
as a time sequence of simple concurrent operations. FPGA 
implementations have the potential to be parallel using a 
mixture of these two forms. For example, in order to exploit 
both forms of parallelism the FPGA could be configured to 
partition the image and distribute the resulting sections to 
multiple pipelines all of which could process data concurrently. 

Pragmatically, the degree of parallelization is subject to the 
processing mode and hardware constraints imposed by the 
system. Based on previous work [3,4] we have identified the 
following constraints: timing (limited processing time), 
bandwidth (limited access to data), and resource (limited system 
resources) constraints. These constraints are inextricably linked 
and manifest themselves in different ways depending on the 
processing mode. Managing constraints makes the mapping of 
image processing algorithms to hardware more challenging as 
section II demonstrates. 

B. The mapping process 
In this paper, mapping is defined as the process of taking a 

conceptual image processing algorithm and specifying it in 
some hardware language which can then be subsequently 
compiled into a netlist. The mapping process can be performed 
at different levels of abstraction. 

At the low-level, the designer must manually manage the 
constraints by hand. To achieve this the design is often specified 
at the register transfer level (RTL) to help maintain better 
control of the constraints and allow for flexible optimization. 
Our previous work [3,4] corroborates this conclusion and shows 
that it is beneficial to maintain a data flow approach at the 
register transfer level. Success and significant speed increases 
over sequential architectures have also been shown in the 
literature for low-level mappings that use this approach [5-7]. 

The ‘better control’ described is a function of the low-level 
programming model used and it follows that the designer must 
be prepared to deal directly with the hardware constraints and 
their implications. For example, the timing constraint of real-
time processing introduces a number of additional 
complications. These include such issues as limited memory 
bandwidth, resource conflicts, and the need for pipelining. 



Design at this level requires specialist knowledge of the 
underlying hardware. 

Programming for hardware at the RTL is analogous to 
programming in assembly language in the software domain. 
Like assembly language, however, design at the RTL becomes 
difficult, cumbersome and time consuming for large and 
complex algorithms.  

At the other end of the spectrum there are high-level 
languages and their associated compilers, many of which are 
based on popular software languages [8-10]. A common goal of 
these languages is to hide low-level details, such as scheduling 
and pipelining, from the developer by allowing the compiler to 
automatically extract parallelism using optimization techniques 
such as loop unrolling to exploit spatial parallelism and 
automatic pipelining to exploit temporal parallelism. Thus a 
working hardware design may be as simple as making a few 
syntactic modifications to an existing program, compiling it and 
downloading the resulting configuration file to the FPGA. This 
allows a more algorithmic approach to hardware design and 
appears to be a perfect solution for image processing, which 
already has a large stable code base of well-defined software 
algorithms for implementing many common image processing 
operations [11]. This also makes it easy for image processing 
experts who are used to programming in a software language to 
make the transition from algorithmic source code to a gate-level 
representation (netlist) without any knowledge of the underlying 
low-level issues [12]. 

The problem with a high-level approach is that the paradigms 
of hardware and software are fundamentally different. What 
proves prudent for software programming may prove to be 
unwise when programming for hardware. For example, a 
complex expression such as (1), 

 2( )f x x x= +  (1) 

can be directly evaluated in software. In hardware however, the 
multiplication and square root are costly to calculate and direct 
evaluation may be unwise. 

High-level languages for hardware give the illusion of 
programming for software which can reinforce the software 
‘mindset’. Ref. [13] has stated that the classical serial 
architecture is so central to modern computing that the 
architecture-algorithm duality is firmly skewed towards this 
type of architecture. If direct mapping of a software algorithm 
to hardware is performed, compiler optimizations will only 
improve the speed of what is fundamentally a sequential-based 
algorithm as the implementation results from [12] demonstrate. 
Although functionally correct, it may not represent the best 
algorithm to use for certain processing modes on an FPGA, 
which could benefit from a completely different and more 
efficient mapping of the conceptual algorithm to hardware. In 
these cases the algorithm needs to be rewritten to meet the 
constraints imposed by the hardware and development reverts to 
low-level mapping. 

C. Design patterns: a more flexible solution 
It is clear that there are shortcomings in the mapping process 

for both methods described above. Low-level mapping is labor 

intensive with little emphasis placed on design reusability. In 
high-level mapping the ‘software mindset’ often results in less 
than optimal mappings.  

Reflection over previous work [3,4,14] has led to the 
identification of common challenges, in the mapping process 
under imposed constraints. To address this, we propose 
applying the concept of design patterns, a common design 
methodology in software engineering [15] (and originally 
borrowed from architectural engineering [16]), to the 
application domain of image processing on FPGAs. 

Design patterns, as we envisage applying them, identify 
possible techniques for managing the constraints in different 
situations and focus on key elements of the solution which may 
be reusable in subsequent mappings. Recorded patterns provide 
a way to convey design experience in a structured and 
informative manner by capturing the essence of the solution. 
These generalized solutions are not restricted to a specific 
implementation platform or language and therefore, provide a 
suitable abstraction that can be applied to emerging languages 
and hardware in this fast moving area. 

The use of generalized solutions such as design patterns in 
the mapping process is not a new concept. Ref. [17] discusses 
hardware skeletons which are defined as a parameterized 
description of a task-specific architecture. However, design 
patterns differ in that they are more abstract. Hardware 
skeletons can be directly embodied in code, but only examples 
of patterns can be embodied in code. Other researchers in the 
field of reconfigurable computing advocate the use of design 
patterns but take a broader view for general purpose 
reconfigurable computing [18]. Instead, we opt for a narrower 
view focused on image processing and the aspects of image 
processing that make the mapping process difficult.  

As the constraints play a vital role in the mapping process, 
section II discusses the constraints, under what circumstances 
they are imposed and their effect under different processing 
modes. Section III describes design patterns applied to image 
processing in more detail and addresses issues of documentation 
and categorization. In section IV, the application of design 
patterns to an image processing operation, bilinear interpolation 
is discussed with respect to the issues illustrated in the paper. 
Section V closes with a summary of the paper. 

II. BACKGROUND 

A. Processing modes 
The constraints outlined above manifest themselves in 

different ways depending on the processing mode. We believe 
there are three modes: stream, offline and hybrid processing.  

In stream processing, data is received from the input device 
in a raster nature and at video rates. Memory bandwidth 
constraints dictate that as much processing as possible is 
performed on the data as it arrives.  

In offline processing there is no strict timing constraint. This 
allows time for an entire image to be written to memory and 
thus random access to memory containing the image data. This 
mode is the easiest to program, as a direct mapping from a 
software algorithm can be used. The speed of execution in most 
cases is limited primarily by the memory access speed.  



The hybrid case is a mixture of stream and offline processing. 
For example, stream processing can be used for image capture 
and display while offline processing can be used in order to 
provide random access to a region of interest in the captured 
image. 

B. Constraints 
1) Timing constraints: The data rate requirements of the 

application impose a timing constraint which in turn drives the 
other constraints. If there is no requirement on processing time 
then the constraint on timing is relaxed and the system can 
revert to offline processing. The constraint on bandwidth is also 
eliminated because random access to memory is possible and 
desired values in memory can be obtained over a number of 
clock cycles with buffering between cycles. Offline processing 
in hardware therefore closely resembles the software 
programming paradigm; the developer need not worry about 
constraints to any great extent. 

This is the approach taken by languages that map software 
algorithms to hardware. The method applies various automatic 
optimization techniques to produce hardware that processes the 
input data as fast as possible. Any speedup over an equivalent 
implementation on a serial processor is deemed useful. This is 
the underlying approach offered by [8]. 

In contrast to this, when an image processing application 
demands real-time processing at video rates, the timing 
constraints become crucial. For example, video display 
generation has deadlines on the order of one pixel every 40 ns 
(VGA output). Stream processing constrains the design into 
performing all of the required calculations for each pixel at the 
pixel clock rate. Producing one pixel every 40 ns for non-trivial 
applications, such as lens distortion correction [3], is difficult 
because for each pixel complex expressions must be evaluated. 
These can introduce significant propagation delay, which may 
easily exceed a single pixel clock cycle. A pipelined approach is 
thus needed that accepts an input pixel value from the stream 
and outputs a processed pixel value every clock cycle with 
several clock cycles of latency, equal to the number of pipeline 
stages, between the input and output. This allows several 
pipeline stages each for the evaluation of complex expressions 
and functions. 

Pipelining is a relatively easy optimization to perform, since 
it does not require that the algorithm be modified. In some cases 
real-time video processing rates are achieved or exceeded when 
pipelined architecture is created. However, there is no guarantee 
that compiler optimizations will meet the explicit timing 
constraints demanded by video rate processing. 

Some software algorithms do not translate efficiently to 
hardware because they may access memory in a way which 
cannot be supported. Subsequently, they do not meet timing 
constraints regardless of whether pipelining is performed. Chain 
coding is an example of such an operation [14]. This operation 
requires random access to memory that cannot be easily 
achieved in stream processing mode. The algorithm must be 
rewritten without the requirement of random access to memory 
using either single or multiple passes through the image [19]. 

2) Bandwidth constraints: Under stream processing, some 
operations require that the image be partly or wholly buffered 

because the order that the pixels are required for processing 
does not directly correspond to the raster order in which they 
are input. This is true for geometric transformations and local 
filter operations. Consequently developers are forced to deal 
with resource and bandwidth constraints. 

Frame buffering requires large amounts of memory. The size 
of the frame buffer depends upon the transform itself. In the 
worst case (rotation by 90º, for example) the whole image must 
be buffered. A single 24-bit (8-bits per color channel) color 
image with 768 by 576 pixels requires 1.2 MB of memory. 
Unlike software systems that have large pools of memory and 
storage available to hold programs and data, FPGAs have 
comparatively small amounts of memory and storage (logic 
blocks). 

The logic blocks themselves can be configured to act like 
RAM but this is usually an inefficient use of the logic blocks.  

Typically off-chip memory is used for frame buffering but 
this may only allow a single access to the frame buffer per clock 
cycle, which can be a problem for the many operations that 
require simultaneous access to more than one pixel from the 
input image (see section IV).  

Managing bandwidth constraints can involve reformulating 
the software algorithm [14]. Design patterns can address this 
issue by aiding in the design of more complex algorithms. 

3) Resource constraints: Resource contention arises due to 
the finite number of available resources in the system such as 
local and off-chip RAM, or other function blocks implemented 
on the FPGA. A software system also has finite resources but 
the sequential flow of execution removes any possible conflict 
for resource access. The addition of an operating system and its 
related sub-systems (e.g. memory management sub-system) can 
also help automate scheduling for resources.  

On an FPGA, if there are a number of concurrent processes 
that need access to a particular resource in a given clock cycle 
then some form of scheduling must be implemented to avoid 
accessing the same resource at the same time. The worst case 
involves redesigning the underlying algorithm.  

Pipelining results in an increase in logic block usage. This is 
caused by the need to construct pipeline stages and registers 
rather than being able to reuse the small number of sequential 
computing elements (ALU and registers), as can be done with 
offline processing. Flip flops introduced by pipelining typically 
incur a minimum of additional area on an FPGA, as they are 
mapped onto unused flip flops within logic blocks that are 
already used for implementing other combinatorial logic in the 
design [20].  

While the impact of pipeline registers on logic block usage 
will be minimal, care must still be taken to make efficient use of 
the available logic blocks. Programming without consideration 
of the hardware that will be generated has a direct effect on the 
speed of the implementation. For example, implementations of 
more complex arithmetic operations such as square roots 
consume large resources and also increase combinatorial delays 
if not pipelined. These are especially important consideration 
for designs using small, low cost FPGAs. Design patterns 
targeted towards resource constraints can help address some of 
these issues. 



III. DESIGN PATTERNS 
In essence, design patterns are generalized solutions to 

recurring problems. Borrowing the simplistic example from 
section I, direct evaluation of complex expressions such as (1) 
in an FPGA implementation is often an inefficient use of 
resources and can lengthen combinatorial delays. One solution 
is to pre-calculate values of the expression and store them in a 
look-up table (LUT). Therefore, a LUT is a design pattern that 
can be used to address timing and to a certain extent, resource 
constraints. This solution is general enough to be applied to any 
future situations where different complex expressions are 
encountered, sharing the original vision of design patterns as 
expressed by [16] who first applied them to architectural design: 
“Each pattern describes a problem which occurs over and over 
again in our environment and then describes the core of the 
solution to that problem, in such a way that you can use this 
solution a million times over, without ever doing it the same 
way twice” ([16], pg. x). 

A. Requirements for documentation 
Cataloguing design patterns is outside the scope of this paper 

but a discussion of the simple LUT design pattern will be useful 
in showing the essential elements [15] that a pattern requires. 

Firstly, a descriptive pattern name is required to help 
recognize, communicate, and use the pattern in design at a 
higher level of abstraction. Secondly, a detailed description of 
the problem is needed to help recognize when the pattern can be 
applied. In the LUT pattern example, if the expression to be 
evaluated contains square root operations, which are costly to 
implement on an FPGA, then this justifies the use of a LUT. 
This would require a discussion on what arithmetic operations 
are expensive or inefficient to perform on an FPGA. 

The pattern should also contain a description of the elements 
which make up the solution itself and their relationships. In 
order to maintain suitable abstraction the solution should not 
describe a particular implementation, but an example 
implementation can be presented if applicable. In the LUT 
pattern example, the solution would describe how to go about 
creating the entries in the LUT, such as how to calculate and 
choose a likely range of input values, rather than how to 
instantiate a LUT in a particular design. 

Finally, a pattern should also consider the consequences or 
trade-offs involved in applying the pattern. In the LUT pattern 
example this may involve discussing the loss of precision that is 
incurred by replacing the expression with a LUT. 

We borrow from [15] the standardized form for the 
description of design patterns. Documenting design patterns 
helps to convey design experience in a structured way [15]. 

B. Categorizing design patterns 
Design patterns can vary greatly in their level of abstraction. 

For example, pipelining is a design pattern that addresses timing 
constraints. Pipelining, as mentioned in section II, reduces  
propagation delays through combinatorial logic by breaking up 
the logic with registers to store intermediate results. This allows 
the design to be clocked faster (in order to meet timing 
constraints) at the expense of increased latency. This pattern is 
quite abstract in its application because pipelining is almost 

always used in an FPGA implementation and while the pattern 
can provide a “rule of thumb” as to when to pipeline it cannot 
specify what parts of a particular algorithm should be pipelined. 
On the other hand, the LUT pattern can give more specific 
guidelines on when a LUT should be applied, such as when an 
expression contains a square root operation. This leads to an 
important aspect in our proposal of applying design patterns: 
taxonomy. 

As there are many design patterns (discovered, documented 
and undiscovered) and each can vary in its level of abstraction 
and purpose, there needs to be a way to categorize them. 
Categorizing should be performed according to the application 
domain that design patterns will be applied to. Ref. [16] opted 
for a hierarchical categorization, viewing the connection 
between patterns as a linear and dependent sequence of 
categories from the general (e.g. towns) to the specific (e.g. 
rooms). This hierarchical categorization suits the architectural 
domain as rooms only exists in buildings, buildings only exist in 
neighborhoods, and neighborhoods only exist in towns. Ref. 
[15] on the other hand have opted for classification according to 
purpose, which reflects what a pattern does. Thus a pattern can 
have creational, structural, or behavioral purpose depending on 
what effect the pattern has on the (programming) object. This 
suits the object-oriented programming paradigm of the software 
engineering domain. 

Thus, we propose categorizing design patterns according to 
the constraints that they address because in the application 
domain of image processing we are concerned with how to 
manage the constraints effectively during the mapping process.  

One of the goals in design pattern categorization is to 
investigate the relationships between the various design 
patterns. These relationships include collaborations, 
alternatives, and dependencies between patterns. A design 
pattern can also encapsulate other design patterns as section IV 
will demonstrate. In this sense design patterns are hierarchical 
but it is less useful for us to categorize them this way. 

Design patterns as we envisage applying them, are governed 
by underlying principles specific to image processing and 
reconfigurable computing. An understanding of the underlying 
principles in the application domain is helpful in the discovery 
and categorization of design patterns. For example, one 
principle is that the width of memory in off-chip RAM is 
generally greater than the width of a pixel value. It is therefore 
possible to pack more than one pixel into a given memory 
location (e.g. a 32-bit memory location can store two 16-bit 
RGB pixels or four 8-bit gray-scale pixels if color processing is 
not required). This pattern can be used to address bandwidth 
constraints, as more than one pixel can be obtained per access. 

Where possible design patterns should cover a range of 
possible solutions so a user can base their choice of patterns in 
the context of how the problem is presented and the imposed 
constraints. In order to show how knowledge of design patterns 
can simplify the design process and encourage reusability, an 
example will be undertaken. 



IV. EXAMPLE 
Spatial transformations, such as digital zooming or rotation 

redefine the “arrangement” of pixels on the image plane. The 
coordinates for new pixels in the transformed image are rarely 
integer values and are generally located in “between” pixels in 
the original image. To calculate the values of these new pixels 
bilinear interpolation is often used as it provides a satisfactory 
compromise between computational efficiency and image 
quality [21]. The algorithm obtains the pixel value by taking a 
weighted sum of the pixel values of the four nearest neighbors 
surrounding the calculated location as shown below in Fig. 1 
and (2): 

Figure 1.  Bilinear interpolation neighborhood 
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Obtaining the pixel values of the neighborhood in Fig. 1 is 
trivial to perform in offline processing or in software as values 
can be retrieved over a number of clock cycles. However, the 
constraints imposed by a real-time implementation can 
complicate the design. As section II discussed, video rate 
processing for the display requires that one pixel be produced 
every 40 ns and for each pixel (2) must be evaluated. This can 
introduce significant propagation delay. Simultaneous access to 
four pixels in the input image is also required every clock cycle 
according to (2). This introduces a bandwidth constraint as 
potentially only a single access can be made to the frame buffer 
per clock cycle. 

In addition to these “hardware” based constraints, the 
problem itself introduces additional constraints as the 
presentation of the input data is dependent on the spatial 
transform itself. For example, in simple zooming operations the 
calculated coordinates will be presented in a raster-based 
fashion. Pure rotation operations introduce additional 
complications because the coordinates now appear on straight 
lines at the angle of rotation, one pixel apart. To address all of 
these problems design patterns that can be applied.  

As detailed in section II, spatial transforms require frame 
buffering. To achieve this we can apply a design pattern for 
frame buffering. The applied pattern will depend on the memory 
architecture of the system. Possible patterns to deal with frame 
buffering are the use multi-port RAM, multiple RAM banks in 
parallel or using a faster RAM clock to read multiple locations 
in a single pixel clock cycle. While each of these frame 
buffering patterns also aids in the alleviation of the memory 
bandwidth constraint by allowing multiple accesses, the 
consequences of using any of these patterns must also be 
weighed. Multi-port RAM is specialized and expensive. The use 
of multiple banks is clumsy because the added redundancy is 
expensive in both cost and space. Finally, using a faster RAM 
clock requires high speed memory and introduces 
synchronization issues. 

In many cases we apply the design pattern of double frame 
buffering as our hardware system only provides single-port 
access to off-chip memory. Effectively this pattern uses two 
frame buffers allowing the stream from the camera to be written 
to one bank while a stream from the other bank is read and 
processed. When the stream from the camera reaches the end of 
a frame the roles of the banks are swapped. 

To overcome timing constraints the pipelining design pattern 
can be applied. This allows several pipeline stages for the 
calculation of (2). 

Problem knowledge, however, can somewhat alleviate the 
requirements on the bandwidth constraint. Bilinear interpolation 
in (2) is effectively a 2×2 window filter with weights that vary 
according to the location within the image. As the window is 
shifted by a single pixel each time half of the neighborhood 
values can be obtained from the previous calculation. A third 
pixel value can be obtained from the frame buffer, leaving the 
last pixel value unknown. 

Depending on the application requirements and hardware 
specifications, the pack memory pattern detailed in the previous 
section can be used to help obtain the final pixel value. One of 
the tradeoffs is that in general it requires the use of lower color 
depth, such as 16-bit RGB as opposed to 24-bit RGB, or gray-
scale processing, which may be prohibitive for some 
applications. The pattern can enable more than one pixel to be 
retrieved in a single access. 

Alternatively, recognition that bilinear interpolation is 
effectively a 2×2 window filter, as mentioned above, allows the 
application of a row buffering design pattern as shown below in 
Fig 2: 

Figure 2.  Bilinear interpolation using row buffering design pattern which can 
also be applied to window filtering 



In Fig 2. input data from the previous row is buffered using a 
shift register (or circular memory buffer) for when the window 
is scanned along subsequent lines. Pixel values for interpolation 
can now be obtained from the previous calculation, the frame 
buffer and a single row buffer. This design pattern can also be 
reapplied to any window filtering operation. 

“Harder” spatial transforms typical of applications such as 
lens distortion correction make the on-demand row buffering 
design pattern in Fig 2. ineffective because the coordinate path 
may be curved and the coordinate step size may not be uniform. 
To overcome this we can use a design pattern that utilizes the 
principle that (in display generation) there are more clock cycles 
on a row and frame than there are pixels, due to the horizontal 
and vertical blanking periods. This gives rise to the preloading 
buffer design pattern. During the blanking period of the display, 
where processing is stalled, a separate process can be used to 
preload a buffer with pixel values for the next row from the 
frame buffer. The pixel values could be preloaded in some 
“dumb” fashion (i.e. row-by-row) or according to certain 
conditions, such as only values that are likely to be used in 
subsequent calculations, in order to maximize buffer efficiency. 

This example demonstrates that trivial software algorithms 
like bilinear interpolation are quickly complicated by real-time 
processing constraints. A hardware implementation reveals 
many considerations such as problem constraints, processing 
modes and available hardware, leading to a range of design 
patterns. Choosing a design pattern that meets all these 
considerations for the particular problem at hand is the key to an 
efficient hardware implementation. 

V. SUMMARY 
FPGAs are often used as implementation platforms for real-

time image processing applications because their structure can 
exploit spatial and temporal parallelism.  

High-level languages and compilers which automatically 
extract parallelism from the code do not always produce an 
efficient mapping to hardware. The code is usually adapted 
from a software implementation and thus has the disadvantage 
that the resulting implementation is based fundamentally on a 
serial algorithm. Low-level mapping can overcome the 
‘software mindset’ but as a consequence the designer must now 
deal more closely with the constraints, which is labor intensive 
and places little emphasis on reusability. 

Design patterns offer an answer to this by directly addressing 
the common challenges and imposed constraints of the mapping 
process and focusing on key elements of the solution which may 
be reusable in subsequent mappings. Recorded patterns also 
help convey design experience in a structured manner. 
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