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Abstract
This paper presents a new hybrid algorithm for reconstructing three-dimensional scenes from multiple camera
images. Based on both belief propagation and the greedy technique, the new algorithm combines the two
approaches overcoming some of the problems specific to each. The resulting algorithm is essentially a dynamic
form of belief propagation, where the local compatibility functions vary from iteration to iteration under the
guidance of a greedy approach. This enables detailed statistical prior information to be incorporated into the
reconstruction through the belief propagation process, while at the same time dealing with occlusions through the
greedy technique. To demonstrate the advantages of this approach, the algorithm was tested on several simulated
data sets. Results show an improvement in performance over both the original greedy and belief propagation
algorithms, although execution time is slightly longer.

Keywords: stereo vision, multiple camera, belief propagation, greedy algorithm

1 Introduction

The problem of reconstructing or estimating the struc-
ture of a three-dimensional scene from several photo-
metric images is fundamental to many aspects of im-
age and vision computing. The problem was first in-
vestigated in 1849, when Aim Laussedat used terres-
trial photographs for topographic map compilation. At
about the same time, investigations into human or bio-
logical stereopsis began, following the invention of the
stereoscope by Sir Charles Wheatstone. Since then a
large amount of research has been undertaken, includ-
ing recent developments within the fields of machine
vision and computer graphics.

Such a diverse background has lead to a wide range of
ideas and approaches for performing stereo reconstruc-
tion. Initial techniques were based on image matching
[1], where points, regions or features were matched
between pairs of images. The depth of each matched
primitive was then found by simple triangulation. This
worked tolerably well for simple scenes but did not
make good use of the available information. In re-
cent years, research has centered around applications
in machine vision and computer graphics, where accu-
rate and detailed models of often complex scenes are
required. For such applications, traditional techniques
are unsuitable, requiring new and improved approaches
to deal with multiple cameras, multiple surfaces, and
widely varying views. This has lead to various global
optimisation techniques [2, 3, 4], as well as to sev-
eral volumetric algorithms, where the scene is recon-
structed directly in a true three-dimensional space [5,

6, 7]. Unfortunately, little work has been done on algo-
rithms that combine these two approaches.

To address this, a new hybrid algorithm based on a
Bayesian approach is presented, that performs global
optimisation within a volumetric framework. This
offers the benefits of a volumetric approach, where
the interaction between scene parameters can be
accurately modelled in three-dimensions, while still
providing efficient global optimisation over the entire
solution space. Based on a combination of Belief
Propagation and the Greedy technique, the proposed
algorithm successfully combines the two approaches.

First a review of related work is given, including
a discussion of Belief Propagation and the Greedy
approach. The problem of scene reconstruction is
defined more precisely in Section 3, along with the
system model that will be used. Section 4 describes
the proposed Greedy Belief Propagation algorithm in
detail and explains the theory behind it. Experimental
results are then shown in Section 5, demonstrating the
effectiveness of this algorithm on several test scenes,
followed by a discussion of the algorithm and results
in Section 6. Finally a brief conclusion of the work is
given in Section 7.

2 Related Work

Recent research in scene reconstruction has focused on
the estimation of complex scenes from multiple camera
images. Such systems, often containing numerous sur-
faces, discontinuities and occlusions, introduce a num-
ber of problems that are not easily dealt with using
traditional stereo matching approaches.
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2.1 Global Optimisation

To address some of these issues and improve the scene
reconstruction process, a lot of recent work has focused
on global optimisation techniques [2, 3, 4]. These are
techniques which attempt to find the overall optimal
solution to a problem, rather than simply some local
solution. Of these, the best results to date have been
obtained though the use of Graph Cuts [3] and Belief
Propagation [2]. For a comprehensive review of these,
and other recent stereo algorithms, applied to a two
camera system, the reader is referred to an excellent
paper by Scharstein and Szeliski [8]. In particular Be-
lief Propagation has been shown to be an effective and
highly parallel algorithm that can be applied to a wide
range of inference problems.

2.2 Belief Propagation

”Belief Propagation”, proposed by Pearl [9] is one of
several closely related message passing algorithms that
have been independently developed for solving infer-
ence problems on probabilistic models. Equivalent or
very closely related algorithms include the Viterbi al-
gorithm, the turbo-decoding algorithm, and the Kalman
filter. All of these algorithms are designed to either
maximise the joint posterior probability distribution of
the entire graph or determine the marginal posterior
probability distribution of individual nodes. What is
sometimes confusing, is that there are two forms of
the belief propagation algorithm, one for each of these
situations. These are referred to as the ”max-product”
and ”sum-product” algorithms respectively. In either
case, messages are iteratively sent between neighbour-
ing nodes in the graphical model until a final solution
is obtained. The algorithms are exact when the graph-
ical model has a tree structure but only approximate
when the graph contains cycles. Fortunately, surpris-
ingly good results are often obtained even in the pres-
ence of loops.

Sun et al [2] recently applied belief propagation to the
scene reconstruction problem, with some excellent re-
sults. In their approach the scene is represented as a
depth map relative to one of the images. The condi-
tional likelihood of each point given the image data is
then modelled using additional observation nodes and
associated compatibility functions.

As with the majority of approaches to scene reconstruc-
tion, one of the main problems with their method is that
the interaction between scene points is poorly mod-
elled. In particular they assume occlusions are statis-
tically independent of the estimated depth map. This
is a rather poor assumption and leads to an inaccurate
set of compatibility functions. This in turn can cause
the belief propagation process to converge to an unde-
sirable solution, resulting in a reduced quality of the
scene estimate.

2.3 Volumetric Methods

To overcome some of the problems associated with oc-
clusions and improve results, a number of scene or vol-
umetric based methods have been proposed [5, 6, 7].
These are especially helpful when dealing with com-
plex surfaces or general multiple camera systems. In
most cases the scene is represented using a true three-
dimensional model, rather than as a depth-map or a sin-
gle surface. This is preferable to the traditional repre-
sentations, as the interaction between scene parameters
can be accurately modelled in three-dimensions. A re-
cent survey of volumetric methods is given in [10]. The
problem with most of these approaches, however, is
that the global optimisation techniques used are rather
poor, resulting in suboptimal scene reconstructions.

2.4 The Greedy Approach

In an attempt to improve the results of volumetric scene
reconstruction, Forne and Hayes proposed a greedy
approach [11], which attempts to find the Maximum
A Posteriori (MAP) estimate of the scene. Beginning
with a transparent estimate, points are progressively
assigned as opaque until a complete scene estimate
has been formed. This is done by selecting the most
likely surface point at each iteration, and updating
the remaining visibilities and associated probabilities
accordingly.

The major difficulty with this approach is how to accu-
rately calculate a points probability based on the avail-
able information. In particular, effective and efficient
ways for applying spatial cohesion are required. In the
work of Forne and Hayes [11] this is done by simply
increasing a points likelihood based on the number of
opaque neighbours it has. This works moderately well
in some situations, but the obtained probabilities are
often inaccurate, leading to reconstruction errors.

3 Scene Reconstruction

Like many tasks in image and vision computing,
scene reconstruction is an ill-posed problem with
inherent ambiguities. The basic objective of scene
reconstruction is to recover or infer information about
a scene from sensor data and any additional prior
information. Because of sensor noise, modelling
errors and a loss of information when projecting a
three-dimensional scene into two-dimensions, an exact
reconstruction is not possible. To deal with this a
Bayesian approach can be used, where the objective is
to find the most likely estimate of the scene given a set
of measurements (in this case camera images) and any
prior information.

Using S = {s1,s2, ...,sL} to represent the desired set of
scene parameters and I = {I1(x,y), I2(x,y), ..., IN(x,y)}
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Figure 1: Pairwise Markov Random Field used to
model the joint probability distribution of the system.
Grey nodes are hidden scene variables. White nodes
are the observation variables.

to represent the set of camera images, the reconstruc-
tion problem can be expressed as, given I find the most
likely estimate of S. From Bayes rule, this can be ex-
pressed as

max
arg S

P(S|I) = max
arg S

(
P(I|S)P(S)

P(I)

)
. (1)

The denominator, P(I), being independent of our esti-
mate Ŝ can be removed from the expression, giving

max
arg S

P(S|I) = max
arg S

(P(I|S)P(S)) . (2)

This states that the most likely scene is the one which
maximises the joint probability distribution of the sys-
tem.

In principle this problem is trivial and can be solved
by searching through all possible combinations to find
the one which is most likely. However, even for very
small systems this approach is usually infeasible as the
number of possible combinations is enormous.

3.1 System Model

In order to estimate and describe properties of a scene,
such as structure and colour, and relate these to the
observed sensor data, a model or representation of the
physical system is required. In this paper, we have
chosen to model the scene as a piece-wise continuous
surface z = z(x,y). This is represented using a 2-D
array of variables S = {s1,s2, ...,sL}, whos states cor-
respond to possible surface heights. Although not a
true volumetric representation, this model allows us to
make a direct comparison between the work of Sun
et al. [2] and our proposed greedy belief propagation
algorithm. As with their work, the image data is mod-
elled using an additional set of observation variables
Y = {y1,y2, ...,yL} which represent the data associated
with each scene variable.

The joint probability distribution of the system is then
defined using a hidden pairwise Markov Random Field,
as shown in Figure 1. Using this model, the joint prob-
ability function of this system is given by

P(S,Y ) ∝ ∏
i

ψi(si,yi)∏
i

∏
j∈N(i)

ψi j(si,s j), (3)

where N(i) are the neighbours of i, ψi j(si,s j) is the
compatibility function between neighbouring nodes
si,s j and ψi(si,yi) is the local evidence for node si, as
determined from the data.

Relating this to the joint probability distribution
P(I,S) = P(I|S)P(S), the compatibility functions can
be expressed as,

∏
i

ψi(si,yi) ∝ P(I|S) (4)

and

∏
i

∏
j∈N(i)

ψi j(si,s j) ∝ P(S). (5)

3.2 Conditional probability

Modelling the system noise as additional independent
noise at each of the sensors, the conditional probability
of obtaining I given S can be expressed as

P(I|S) =
N

∏
j=1

M

∏
k=1

P(I j(k)|I′j(k)), (6)

where I j(k) is the observed kth pixel intensity in the jth

image and I′j(k) is the corresponding ideal image inten-
sity, as would be obtain if the estimate was observed
under noiseless conditions.

By modelling the noise distribution as a robust gaussian
probability distribution, Eq (6) can be expressed as

P(I|S) =

N

∏
j=1

M

∏
k=1

⎛
⎜⎝ 1− γ

σ
√

2π
exp

−
[
I′j(k)− I j(k)

]2

2σ2 + γ

⎞
⎟⎠ ,

(7)

where σ is the variance of the gaussian distribution and
γ is the robustness term.

If we now define a complete set of surface points
si(hi) ∈C, as one whos forward projection completely
fills image space, Eq (7) can be re-expressed as

P(I|S) = ∏
si(hi)∈C

V (si(hi)), (8)

where,

V (si(hi)) =

∏
j∈Ωih

⎛
⎜⎝ 1− γ

σ
√

2π
exp

−
[
I′j(τih j)− I j(τih j)

]2

2σ2 + γ

⎞
⎟⎠ .

(9)
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Here, Ωih is the subset of images which observe each
point si(hi) and τih j is the projected position of point
si(hi) in image j. By taking the exponential term
outside the function and replacing multiplication with
summation, the probability of getting the image data
corresponding to point si(hi) can be approximated by,

V (si(hi)) =

exp

(
− 1

2σ2 ∑
j∈Ωih

[
I′j(τih j)− Ii(τih j)

]2
)

+ eu,

(10)

where eu is the robust shaping parameter. Maximising
this expression over all possible intensities, gives

I′j(τih j) =
1

|Ωih| ∑
j∈Ωih

Ii(τi jh) = µih, (11)

where µih is the mean observed intensity of surface
point si(hi).

Finally substituting Eqs (8), (10) and (11) into Eq (4)
and requiring that the scene is complete, the local com-
patibility functions are given by

ψi(si(hi),yi) =

exp

(
− 1

2σ2 ∑
j∈Ωih

[
µih − Ii(τih j)

]2
)

+ eu, (12)

3.3 Prior Knowledge

To improve the estimation process, prior knowledge
about a scene can be incorporated into the reconstruc-
tion process. Although many possible priors can be
used, we will only consider surface visibility and spa-
tial cohesion. This simplifies the problem, making it
easier to compare results between different algorithms.

The first of these, surface visibility, is included so as
to favour more visible surfaces. For implementational
reasons this term is actually incorporated into the local
compatibility by replacing the term,

1
2σ2 ∑

j∈Ωih

[
µih − Ii(τih j)

]2
, (13)

with,

1
|Ωih|

(
1

2σ2 ∑
j∈Ωih

[
µih − Ii(τi jh)

]2
)

+
(N −|Ωih|)

eo
,

(14)

where (N − |Ωih|) is the number of images in which
point si(hi) is occluded and eo is related to the proba-
bility of occlusion.

The second term, spatial cohesion, is based on the fact
that scenes are more likely to consist of a few contin-
uous surfaces, rather than a random cloud of points.

This is incorporated into the Markov Random Field
by defining the compatibility functions between neigh-
bouring nodes as

ψi j(si,s j) = max

(
exp

(
− ∣∣si − s j

∣∣
σd

)
,ed

)
, (15)

where σd and ed are shaping parameters describing the
probability distribution.

4 Greedy Belief Propagation

Having modelled the system as a pairwise MRF, the
optimal scene estimate is obtained by maximising the
corresponding joint probability distribution. To do this
we propose a new greedy belief propagation algorithm.
This is basically the same as standard Belief Propa-
gation except the local compatibility functions are up-
dated to reflect changes in the conditional probability
distribution. These updates are performed in a similar
manner to that used by the Greedy algorithm of Forne
and Hayes [11]. Beginning with an initially transpar-
ent estimate, surface points are progressively assigned
as opaque until a complete scene estimate has been
formed. However, unlike the greedy algorithm, the
assignment of points is reversible, so that points may
be restored to a transparent state.

To begin with, the local compatibility functions
ψi(si,yi) are calculated assuming all surfaces are
visible to all cameras. Standard Belief Propagation
is then performed on the belief network for a fixed
number of iterations. Next, the most likely set of
surface points are assigned to be opaque. This is
done by simply selecting those points whose beliefs
are above some threshold value. Scene visibilities
are then updated along with the associated set of
local compatibility functions. Following this, Belief
Propagation is continued for another fixed number of
iterations. This process is repeated until a complete
estimate of the scene is formed.

During each update, the algorithm checks all currently
assigned points to see if their belief has fallen below the
threshold. If this is the case, the corresponding scene
point is restored to a transparent state, thereby allowing
decisions to be undone.

To ensure convergence, the threshold is progressively
lowered until all nodes have been assigned some
height.

5 Experimental Results

To test the performance of the proposed greedy be-
lief propagation algorithm, two small synthetic test sets
were generated. These were chosen to demonstrate the
problems with existing algorithms and to show how the
proposed algorithm can help to overcome them.
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The first test scene consisted of two square planes
located at different heights above a third background
plane. A sequence of four ideal images of the scene
were then generated based on a square arrangement
of cameras. To each image gaussian noise was added,
giving a 25dB signal to noise ratio, simulating camera
noise and distortions. The resulting top lefthand image
from this sequence is shown in Figure 2(a). This
was also used as the reference image for the various
reconstruction algorithms. The ideal depth map for
this scene is shown in Figure 2(b).

The second test scene comprised of three circular
planes located at different heights above a fourth
background plane. As with the first test set, a sequence
of four ideal images of the scene were generated based
on a square arrangement of cameras. Gaussian noise
was added to each image, again giving a 25dB signal
to noise ratio. The resulting top lefthand image from
this test set is shown in Figure 3(a), while the ideal
depth map for this image is shown in Figure 3(b).

The Greedy Belief Propagation algorithm was then
tested using the same set of parameters for both test
cases. The gaussian noise variance σ was set to 10,
the uniform noise parameter eu to 0.02, the visibility
parameter eo to 0.1, the smoothing parameter σd to 0.7
and the smoothing parameter ed to 0.05. The number
of belief propagation iterations between scene updates
was also fixed to 4.

Results from the Greedy Belief Propagation algorithm
are shown in Figures 2(c) and 3(c).

To observe the effect updating the local compatibility
functions has on the results, a standard Belief Propa-
gation algorithm was tested on the data assuming full
visibility. Results from this are shown in Figures 2(d)
and 3(d). An implementation of Sun et al’s. algorithm
[2] suitable for a 2-D array of cameras was also tested,
with results shown in Figures 2(e) and 3(e). Finally
the results were compared to the greedy algorithm pro-
posed by Forne and Hayes [11]. These are shown in
Figures 2(f) and 3(f).

6 Discussion

Comparing the results from Greedy Belief Propagation
with those obtained from standard BP and Sun et al’s.
algorithm it is apparent how important accurate com-
patibility functions are. As shown in both of the test
examples, inaccurate compatibility functions can lead
to errors which extend well beyond the occluded re-
gions. The proposed Greedy Belief Propagation algo-
rithm does a good job of ensuring that these are con-
sistent with the estimated scene, leading to improved
results on both test sets.

One of the main problems experienced with the Greedy
Belief Propagation algorithm was the assignment of in-
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Figure 2: Test set 1. (a) Top lefthand image from
sequence. (b) Ideal depth map. (c) Results from
Greedy belief propagation. (d) Results from standard
BP algorithm, assuming full visibilities. (e) Results
from implementation of Sun’s et al’s. BP algorithm.
(f) Results from greedy algorithm.

correct points. By assigning a different set of opaque
points to those present in the actual scene, an incor-
rect set of local compatibility functions will be formed.
This can then cause the Belief Propagation process to
be lead astray. Usually this was not too much of a
problem as points incorrectly assigned at one iteration
were typically reversed on the subsequent iteration.

To address this problem a more reliable measure of
probability is required. Unfortunately one of the prob-
lems with Belief Propagation is that the calculated be-
liefs for each node give a measure of how each node
effects the joint probability distribution of the whole
system rather than how likely or otherwise the point is.

7 Conclusions and Future Work

One of the fundamental problems with scene recon-
struction is that the posteriori probability of a scene
point depends not only on the image data mapping to
that point but also on it visibility. Unfortunately these
are unknown prior to reconstruction and depend on the
rest of the scene. Because of this dependence, it is
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Figure 3: Test set 2. (a) Top lefthand image from
sequence. (b) Ideal depth map. (c) Results from
Greedy belief propagation. (d) Results from standard
BP algorithm, assuming full visibilities. (e) Results
from implementation of Sun’s et al’s. BP algorithm.
(f) Results from greedy algorithm.

difficult to produce an accurate measure for the like-
lihood of a point unless the scene is considered as a
whole. To address this difficulty a novel Greedy Be-
lief Propagation algorithm is presented which progres-
sively updates the local probability functions associ-
ated with each point as the scene estimate is refined.
This offers many of the advantages of standard Be-
lief Propagation, while at the same time dealing with
the visibility problem. Results from synthetic test sets
demonstrate the advantages of this approach, and high-
light the problems caused by unknown visibilities.

Future work will focus on improving the system model
as well as attempting to speed up the existing algo-
rithm. It will also investigate methods for making the
assignment of opaque points more reliable.
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