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Abstract

When estimating the location of features such as lines and edges to sub-pixel accuracy, it is necessary to have a
model of the feature to fit the available data to. This paper considers detecting local minima and maxima, and
proposes several models for estimating the sub-pixel location of the corresponding features. These methods are
compared by detecting the locations of lines of various widths, and edges. The effects of lens blur, quantisation,
and noise are also considered. The centre of gravity is effective at locating narrow lines, while a parabolic fit is
the best for thicker lines and edges. For typical image contrasts and signal to noise ratios, a sub-pixel accuracy of

1 to 2 % of the width of a pixel can be expected.
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1 Introduction

Many applications require, or can benefit from,

locating features to sub-pixel accuracy. Examples are:

e Gauging: locating edges of objects to measure size
for inspection.

e Camera calibration: locating feature points (lines,
spots, edges) (eg [1-3]).

e Registration: determining offsets between objects
for template matching, or calculating disparity in
stereo imaging (eg [4]).

e Compression: determining offset for
compensation.

motion

Locating any feature to sub-pixel accuracy requires
first of all that the feature can be reliably detected.
This implies that the feature is sufficiently far (usually
at least 2 pixels) from other similar features so that it
can be resolved unambiguously. A  second
requirement is that the feature can be modelled with
only a few parameters. By fitting the available data
(pixel values) to the model, the location of the feature
may be determined with accuracy significantly better
than 1 pixel.

Correlation with a template results in a set of local
maxima, the locations of correspond to locations of
the template within the image. Alternatively, if
minimum absolute difference is used, a set of local
minima results [5].

Lines less than 2 pixels thick may be detected directly
by looking perpendicular to the line. The line position
corresponds to either the minima or maxima
depending on whether it is a dark line against a light
background, or vice versa. Edges may be converted
into lines by an edge detection filter.
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While it is acknowledged that higher order models
may be used for locating lines and edges to sub-pixel
accuracy, this paper is concerned with locating each
pixel on the line or edge prior to fitting a higher order
model. The approach here estimates the sub-pixel
position of the line or edge by considering each
candidate pixel and its two neighbours, -either
horizontally or vertically (depending on whether the
line is vertical or horizontal respectively). This is
repeated for each potential candidate pixel on the line
or edge. The place of higher order models is then to
link the adjacent detected pixels, and to any detection
noise. The sub-pixel detection of each candidate point
will reduce the systematic error that the higher order
models have to contend with.

2 Models

All of the models discussed in this paper use the
extreme pixel value along with the pixel values on
either side of it to estimate the position of the
extremum to sub-pixel accuracy. If looking at narrow
features such as lines, and detected edges, it does not
make sense to go any wider than this because the data
outside this width is usually of little value.

The notation used throughout this paper is illustrated
in figure 1. A pixel’s position is taken at the centre of
that pixel. Pixels are numbered relative to the local
extreme, which has a value of py. The pixel at 1 has
value p., and that at —1 has value p.. The true
extremum is located at a distance x from the extreme
pixel value, where —0.5<x <0.5.

Using just these three pixel values, the different
models give a value for x.
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Figure 1: Local maximum and pixel definitions.

2.1 Parabola

Given that the true curve is smooth, a common
approach is to approximate it in the vicinity of the
extreme point by a parabola.

y=ax* +bx+c (1)

This parameterised curve is then solved to find the
true position of the local extremum by differentiating
and setting the derivative to zero.

_b

Yo ab=0 x= 2)
dx 2a
Substituting the pixel values for each of the 3 known

data points into equation (1) gives:

p.=a-b+c
Po=¢C 3)
p,=a+b+c

which when solved and substituted into equation (2)
results in the estimate of the location of the true
extreme point:

_ Py —P_ (4)

4p, —2(p, +p.)

In this analysis, no assumption is made as to whether
the centre point is a local minimum or maximum.
Therefore this equation may be used for either.

2.2 Pyramid

In many situations, however, it is known that the peak
is not parabolic in shape. For example if the peak
results from the correlation of an object with a
template, then generally the peak will be shaped like a
pyramid [4]. This is particularly the case if correlating
an object with approximately uniform intensity with a
binary template.

Po,

p—,....»""

x
-1 0 1 >

Figure 2: Pyramid interpolation of local maximum.
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To locate the peak of the pyramid, it is necessary to
assume that the slope is constant over at least the
maximum and an adjacent pixel. If p, > p_ as shown in
figure 2, then the slope on the left may be determined
from py and p.. The slope on the right is negative this,
so the equation for the line on the right can be derived
from the slope and the single point. The two lines are:

Left y=(p, — p)x+ p,

. &)
Right  y=(p_.—po)x+(p,+py—p-)
Solving for where these intersect gives
x= P, —P_ (6)

S 2p-p.)

Similarly, if p. > p. then the slope may be determined
from p, and p., and a line of opposite slope fitted
through p.. This gives the peak of the pyramid at

P, — P
N R 7
T 2pe -1y @)

Combining these equations (6) and (7) gives

2(p0 _m]n(pfa p+))

The analysis here assumed that p, was a local
maximum. If instead it was a local minimum (for
example template matching using minimum absolute
difference), then equation (8) becomes

2(p0 —max(pf, p+))

2.3 Centre of Gravity

When detecting a line, or locating an edge after an
edge detection filter, the peak is relatively narrow. If
the background is zero then the location of the peak
may be found from the centre of gravity:

x:zxipi — p.— P (10)
S potptp

If the background is not equal to zero, or if looking
for a local minimum (where the background is not
zero) then the background must be estimated and
subtracted from each of the values. Equation (10) then
becomes

pP.— P (11)

X =
Pot Dyt p_—3py,

where py, is the background level.

If the line is sufficiently narrow, that one of the three
pixels will be the background, then for detecting local
maxima this becomes:

x: p+_p7. (12)
po+p,+p_ —3min(p,,p )
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or for local minima:

— P — P
Potp.tp _3max(p+>p—)

(13)

X

2.4 Rectangular Section

This model is appropriate for looking at lines that are
wider than 1 pixel. It assumes that the centre pixel is
completely covered by the line, and that the side
pixels partly overlap the line as shown in figure 3.
Their pixel values are given from the proportion of
the pixel covered by the edge.
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$
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Figure 3: Line overlapping pixels. Pixel values p. and
p. are determined from extent of overlap with line.

Since the centre pixel is completely occupied by the
line, it can be used to give the intensity of the line.
From this, the edges of the line are given by:

X, = p+/p0

14
¥ =p /P, (14)

The centre of the line is therefore given from the

centre of the two edges:

D= +D _p-p
2 2pq

(s)

Again, the assumption here is that the background is
zero. If the background is not zero (or if locating a
dark line on a light background) then equation (15) is
modified to:

P, =P

=_P7P 16
) 2(py — Pig) (1

This reduces to equation (8) or (9) if one of the three
pixels is the background.

If the line is exactly 1 pixel wide, as shown in figure
4, then the model is simplified. Consider first a light
line on a dark background with the p. > p.. The pixel
values are given by:

p— = p[;g

Po = P ta(l—x) (17)

b= pbg +ax

Eliminating a and ps, and solving this for x gives

x=—Pe P (18)
Potp.=2p.
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Figure 4: A 1 pixel wide line.

If we also consider the case when p. > p. then this
reduces to the centre of gravity in equation (12).

2.5 Sobel Filtered Edge

When locating edges to sub-pixel accuracy, it is
important that the edge-detecting filter does not
introduce a shift. Therefore filters, such as the Sobel
filter [6], which take a balanced difference are
appropriate. Figure 5 illustrates the effect of applying
a Sobel filter to an edge to give a peak. This is then
located to sub-pixel accuracy.
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Figure 5: Applying a Sobel filter to an edge.

The pixel values associated with an edge of amplitude
a are:

p.=a(3-x)

py=a 19)

p.=a(3+x)

Solving for x gives

x=flo 20)
2p,

which is the same result as equation (15).

3 Effect of Using Each Model

In the previous section, several different models have
been proposed. This section will examine the errors
associated with using each model in a range of
scenarios. Data used is artificial, to enable any
systematic errors to be observed without the effects of
noise. The models applied are:

1. Nearest pixel: the location of the local extremum.
Parabola: from equation (4).

Pyramid: from equation (8).

Centre of gravity: from equation (10) — COG.
Centre of gravity: from equation (12) — COG2.
Sobel edge: from equation (20).

Sk wb
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3.1 Effect on Lines

Any object will become blurred when imaged because
imaging sensors integrate the light within an area. The
cross-section of a line can be considered as a
rectangle function, which is then convolved by
another rectangle function of width 1 pixel. Any lens
blur present will also require a further convolution
with the lens point spread function. In the examples
examined here, the background will be set to 0
without loss of generality. Figure 6 shows the blurring
effect of both imaging and lens blur (0.5 pixel
Gaussian) on a 1.25 pixel wide line.
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Figure 6: Profile of a 1.25 pixel wide line subject to

0.5 pixel Gaussian lens blur. Lower curves are error

profiles of the different peak detection methods, with
error measured as fractions of a pixel.

This profile is sampled for a range of sub-pixel offsets
and the position of the local maximum estimated
using the various models. The error between the
actual and estimated offset is a systematic error
introduced by the model.

The RMS error is calculated for the over the range of
offsets to give an average systematic error in
estimating the position of the line centre. This process
was performed without lens blur (table 1), with 0.5
pixel lens blur (table 2) and 1 pixel lens blur (table 3).

Table 1: Lines with no lens blur. RMS
error in line centre as a percentage of pixel width.

Line width (pixels)
Method 175571055770 [125] 1.5 | 1.75] 2.0 | 225
Nearest | 292292292292 292292292292

Parabola | 19.8 | 15.7|11.9/ 9.0 | 68 |46 | 0 | 7.2

Pyramid |17.1]| 11462 [ 28 | 1.3 |28 |62 |114

COG 1441721 0 |43 |48 31| 0 |41

COG2 144172 ] 0 |46 |68 9.0 [119]15.7

Sobel 17.1111.4]1 62 |28 |09 ] 05] 0 | 2.0

The nearest pixel method gives the same error
regardless of the line width, and as expected, has the
worst average error. All of the methods perform
poorly for narrow line widths. The main reason for
this is that there is insufficient data from the narrow
lines to estimate the true line position. For lines of
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exactly 1 pixel width, both COG methods give an
accurate location of the sub-pixel position of the line.
For wider lines, equation (10) is better than equation
(12) because the latter assumes (incorrectly) that the
minimum of the 3 pixel values is the background. For
narrow lines, both the Pyramid model and the Sobel
model have identical error profiles because either p. or
p- is zero. However, without lens blur, the Pyramid
model does not give a good fit to the actual profile.
The fact that the Parabola model accurately estimates
the offset for 2 pixel wide lines is a little surprising as
that profile is trapezoidal rather than parabolic. Note
though that the simpler Sobel method significantly
outperforms the Parabola model without lens blur.
The ideal response from the Sobel method is expected
for 2 pixel wide lines from the analysis in section 2.4.

Table 1 may be considered the ideal situation, because
there is no lens blur. In practise, there will always be
some lens blur, and if the lens is well matched to the
sensor, the lens point spread function is likely to be
about 0.5 pixels wide. Therefore this case was also
considered, with the results shown in table 2.

Table 2: Lines with 0.5 pixel Gaussian blur. RMS
error in line centre as a percentage of pixel width.

Line width (pixels)
Method 051075 1.0 |1.25]| 1.5 |1.75]| 2.0 |2.25

Parabola | 17.1 145|117/ 9.1 | 6.6 | 39 | 04 | 4.1

Pyramid | 12.7] 94 | 59 |29 109 |29 | 6.0 | 97

COG 771371 0 |22 ]25]16 2053

COG2 7713606396691 ]11.8/14.8

Sobel 127194 1 6.0 |33 | 1.6 | 1.0 | 1.5 | 3.2

When lens blur is added, all of the models improved
for lines less than 1 pixel wide. This is because the
blur made the line wider, and therefore provided some
more information to enable the offset to be estimated.
For 1 pixel wide lines, again the COG method
performs well. The added blur makes equation (12)
less accurate however, because it is starting to violate
the assumptions used in forming the model. The blur
generally causes the Parabola and Pyramid methods to
improve because the wider region of support makes
the assumptions used there more valid. The Sobel
method deteriorates with blur for larger line widths
because the blur makes the assumptions illustrated in
figure 3 less valid.

When the lens point spread function is 1 pixel wide,
the image will start being noticeably blurred. This
case is considered in table 3.

Table 3: Lines with 1 pixel Gaussian blur. RMS
error in line centre as a percentage of pixel width.

Line width (pixels)
Method |05 7075 1.0 [125] 1.5 [1.75] 2.0 [2.25

Parabola | 12.0 | 11.0| 9.6 | 8.0 | 6.1 | 41 | 19| 0.7

Pyramid | 6.2 | 5.0 | 3.5 | 1.8 | 0.7 | 2.5 | 46 | 6.8

COG 13 /1008 |13 ]21|37)|58]85

COG2 0511631149 68|87 ]106][124

Sobel 6758147139134 ]37][46]62
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For narrow lines, the errors have decreased further, to
the extent that the COG methods give reasonable
results. For thick lines, the parabola method becomes
increasingly effective as the profiles are becoming
more parabolic in shape. The pyramid method is also
increasingly accurate with more blur, and remains the
best for lines about 1.5 pixels thick. The Sobel
method deteriorates more significantly with thicker
lines because the blur makes the model less accurate.

The analysis above implicitly assumes that the line is
perpendicular to the three pixels used to locate the
centre. However, in most practical situations, it
cannot be guaranteed that lines will be exactly
horizontal or vertical. If the line is at an angle, the
rectangular pixel point spread function becomes
trapezoidal, and therefore wider. Without loss of
generality, assume that the line is at an angle of 6 off
the vertical. When this line is projected onto the
horizontal scan direction, it results in a trapezoid, as
shown in figure 7. This trapezoid can be considered as
the convolution of two one-dimensional components:
a vertical line of thickness w/cos6 and a blur
component of tan6 . The first component results in
an apparent thickening of the line, and the second
component can be considered as an increased blur in
the direction of the horizontal pixels.

~
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tan6 w/cos6

y

Figure 7: Projection of a diagonal line on a horizontal
row of pixels.

The results of these two effects are outlined in the
experiments described above. The above analysis
assumed that the line was straight. If the line has
significant curvature, the situation is significantly
more complex.

3.2 Effect on edges

The effect on step edges was simulated by blurring
the step edge by the rectangular pixel point spread
function, and then a Gaussian lens point spread
function. This is then passed through a Sobel filter to
give the edge profile, as seen in figure 8.

This was applied to a step edge with a range of lens
blurs, with the results listed in table 4. Clearly the
simple COG does not work well, and neither does the

418

Pyramid model. With no blur, the other 3 methods all
gave perfect results. This was expected for the Sobel
model, which is designed exactly for this situation,
but the performance of the parabola model was a little
surprising. Even more surprising is that the parabola
method is significantly less sensitive to lens blur than
the other methods.

1
0.9+ ‘

0.8+ i
07k Edge profile
after blurring

0.6 and Sobel filtering
0.5+ E

0.4+ Nearest B
0.3r
0.2 CoG Parabola R
o~

0.1p P \‘ d

0
-0.1+
-0.2
-0.3-
-0.4+

-0.5 -
-1.5 -1 -0.5 0 0.5 1 1.5

Actual edge |

Pyramid

Error profiles

Figure 8: An edge and its profile with 0.5 Gaussian
lens blur after Sobel filtering. Lower curves are error
profiles of the different peak detection methods, with

error measured as fractions of a pixel.

Table 4: Location of step edges after Sobel filtering.
RMS error in position as a percentage of pixel width.

Width of lens PSF (pixels

Method '™ 557705 [0.75] 1.0 | 1.25
Nearest | 292 [2921292]292]292]292
Parabola 0 0104 |1.1|19]26
Pyramid | 62 | 62 | 6.0 | 53 | 4.6 | 3.9

COG 119 |11.9|11.8|11.2]/10.6]10.0
COG2 0 0.8 120|39|58[79
Sobel 0 0515|130 [46]63

This was applied to a step edge with a range of lens
blurs, with the results listed in table 4. Clearly the
simple COG does not work well, and neither does the
Pyramid model. With no blur, the other 3 methods all
gave perfect results. This was expected for the Sobel
model, which is designed exactly for this situation,
but the performance of the parabola model was a little
surprising. Even more surprising is that the parabola
method is significantly less sensitive to lens blur than
the other methods.

3.3 Effect of Quantisation

Inevitably, whenever images are captured, the pixel
values are quantised. The contrast between the object
and background will govern the effective number of
levels of quantisation, hence the quantisation noise
introduced into the profile. In testing line location, the
line thickness was chosen as that for which the
method was designed and gives good results. The
effect of quantisation on line location is summarised
in table 5, with the result for edge location in table 6.
In both cases, a lens blur of 0.5 pixels was used.
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Table 5: Effect of quantisation on line location. RMS
error in position as a percentage of pixel width.

Line Levels

width[ o | 256 | 64 | 32 | 16
Parobola] 2.0 | 04 | 04 | 0.6 | 1.1 | 2.1
Pyramid| 1.5 [ 09 | 09 | 1.0 | 12 | 1.6
COG 1.0] 0 | 02|06 | 1.1 |21
COG2 1.0 106 | 06|08 | 1.1 |20
Sobel 2015|1516 |17 |22

Method

Table 6: Effect of quantisation on edge location.
RMS error in position as a percentage of pixel width.

Levels
o | 256| 64 | 32 | 16 8
Parobola| 04 | 04 | 06 | 1.1 | 2.1 | 44
COG2 20 [ 20212225147
Sobel 1.5 151161722146

Method

As expected, reducing the contrast increase the error
in estimating the location of the lines or edges. The
deterioration is most noticeable in situations where
the accuracy is good to start with. When the contrast
is low, there is little difference between the different
methods.

3.4 Effect of Noise

The same exercise was repeated except adding zero-
mean Gaussian noise. Lens blur was kept at 0.5 pixel
widths, and no quantisation was applied.

Table 7: Effect of noise on line location. RMS error
in position as a percentage of pixel width.

Line SNR (dB)

width| oo 60 | 50 | 40 | 30 | 20
Parobola] 2.0 | 04 | 04 | 0.5 | 1.1 | 34 |13.6
Pyramid| 1.5 ] 09 | 09 |09 | 12|27 |85
COG 1.0 0 02051548155
COG2 1.0] 06 |06 07 |12]34]10.8
Sobel 20 15 |15 | 1.5 ]17]29 |81

Method

When detecting lines, for typical signal to noise ratios
found in images, there is very little to choose between
the various methods (provided that an appropriate
model is used). It is interesting to note that although
the pyramid and Sobel models were not as good in
low noise situations, they also tended to be less
sensitive to noise.

Table 8: Effect of noise on edge location. RMS error
in position as a percentage of pixel width.

SNR (dB)
) 60 | 50 | 40 | 30 | 20
Parobola| 04 | 04 | 06 | 1.6 | 53 |34.0
COG2 20 |20 21|23 |44 |129
Sobel 1.5 [ 15116 |19 |43 ]133

Method

The parabola method continued to excel for detecting
edges in low noise situations. However, when the
noise got heavier, there was a threshold effect, and the
accuracy of the parabola method deteriorated rapidly.

Palmerston North, November 2003

4 Conclusions

When detecting lines and edges to sub-pixel accuracy,
it is important to use an appropriate model. While any
of the models discussed in this paper are better than
no sub-pixel estimation, there are significant
differences in the accuracy of the different models.

When detecting lines in images, the best line width to
use is in the range 1 to 2 pixels. Narrower lines have a
larger systematic error because their narrow extent
does not always span more than 1 pixel. For 1 pixel
wide lines, the centre of gravity gives the best
estimate of true line location. For 2 pixel wide lines, a
parabolic model gives the best fit.

When detecting step edges with a Sobel filter, a
parabolic model provides the best estimate of the edge
location. Other methods work well with no lens blur,
but as some blur is always present, the parabolic
method is least sensitive to this blur.

The accuracy of the estimation deteriorates with
reducing contrast and increasing noise, as would be
expected. For typical contrasts and signal to noise
ratios, a sub-pixel accuracy of 1 — 2% of the width of
a pixel can be expected.
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