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Abstract
This paper describes an approach to the use of genetic programming for multi-class image recognition problems.
In this approach, the terminal set is constructed with image pixel statistics, the function set consists of arithmetic
and conditional operators, and the fitness function is based on classification accuracy in the training set. Rather
than using fixed static thresholds as boundaries to distinguish between different classes, this approach introduces
two dynamic methods of classification, namely centred dynamic range selection and slotted dynamic range
selection, based on the returned value of an evolved genetic program where the boundaries between different
classes can be dynamically determined during the evolutionary process. The two dynamic methods are applied to
five image datasets of classification problems of increasing difficulty and are compared with the commonly used
static range selection method. The results suggest that, while the static boundary selection method works well on
relatively easy binary or tertiary image classification problems with class labels arranged in the natural order, the
two dynamic range selection methods outperform the static method for more difficult, multiple class problems.

Keywords: genetic algorithms, object recognition, centred dynamic range selection, slotted dynamic range
selection, genetic programs.

1 Introduction

Genetic programming (GP) is a relatively recent
and fast developing approach to automatic program-
ming [1, 2]. In genetic programming, solutions to
a problem are represented as computer programs.
Darwinian principles of natural selection and
recombination are used to evolve a population of
programs towards an effective solution to specific
problems. The flexibility and expressiveness of
computer program representation, combined with the
powerful capabilities of evolutionary search, make GP
an exciting new method to solve a great variety of
problems.

Since the 1990s, GP has been applied to some real
world classification problems including detecting and
recognising particular classes of objects in images [3,
4, 5, 6, 7, 8]. In these systems, GP classifiers model
a solution to a classification problem in the form of
a mathematical expression, using a set of arithmetic
and mathematical operators, possibly combined with
conditional/logic operators such as the “if-then-else”
structures commonly used in computer programs.

The output of a GP classifier is a numeric value that is
typically translated into a class label. For the simple
binary classification case, this translation can be based
on the sign of the numeric value [4, 9, 10, 11]; for
multi-class problems, finding the appropriate boundary
values to separate the different classes is more difficult.

The simplest approach (static range selection) – fix-
ing the boundary values at manually chosen points –
often results in unnecessarily complex programs and
could lead to poor performance and very long training
times [6, 8].

The goal of this paper is to develop new classification
strategies in GP for multi-class image classification
problems. The main focus is on the translation of the
numeric output of a genetic program classifier into
class labels. Rather than using manually pre-defined
boundary values, we will consider methods which
allow each genetic program to use a set of dynamically
determined class boundaries. We will compare the
two methods with the current static (manually defined)
method on a number of image classification problems
of increasing difficulty.

This paper is organised as follows. Section 2 describes
the overall GP approach for object classification prob-
lems. Section 3 describes the two classification strate-
gies. Section 4 presents the five image classification
problems used in this approach. Section 5 presents the
experimental results and section 6 gives the concluding
remarks.

2 GP Applied to Object Classification

In this approach, we used the based tree-structure to
represent genetic programs [12]. The ramped half-
and-half method was used for generating the programs
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in the initial population and for the mutation operator
[1]. The proportional selection mechanism and the
reproduction [8], crossover and mutation operators
were used in the learning and evolutionary process [1].

In the remainder of this section, we address the other
aspects of the GP learning/evolutionary system: (1)
Determination of the terminal set; (2) Determination
of the function set; (3) Construction of the fitness
measure; and (4) Selection of the input parameters and
determination of the termination strategy.

2.1 Terminals

For object classification problems, terminals generally
correspond to image features. Some conventional
approaches to image recognition usually use high
level, domain specific features of images as inputs
to a learning/classification system, which generally
involves a time consuming feature selection and a
hand-crafting of feature extraction programs. In this
approach, we used pixel level, domain independent
statistical features (referred to as pixel statistics) as
terminals and we expect the GP evolutionary process
can automatically select features that are relevant to a
particular domain to construct good genetic programs.

Four pixel statistics are used in this approach: the av-
erage intensity of the whole object cutout image, the
variance of intensity of the whole object cutout image,
the average intensity of the central local region, and the
variance of intensity of the central local region.

Since the range of these four features are quite differ-
ent, we linearly normalised these feature values into the
range [-1, 1] based on all object image examples to be
classified.

In addition, we also used some constants as terminals.
These constants are randomly generated using a uni-
form distribution. To be consistent with the feature
terminals, we also set the range of the constants as [-1,
1]. Unlike the feature terminals where the same feature
usually has different values for different object images,
the constant terminals will remain unchanged for all
object images through the whole evolutionary process.

2.2 Functions

In the function set, the four standard arithmetic and a
conditional operation was used to form the function set:

FuncSet = {+,−,∗,/, i f} (1)

The +, −, and ∗ operators have their usual meanings —
addition, subtraction and multiplication, while / repre-
sents “protected” division which is the usual division
operator except that a divide by zero gives a result of
zero. Each of these functions takes two arguments. The
if function takes three arguments. The first argument,

which can be any expression, constitutes the condition.
If the first argument is negative, the if function returns
its second argument; otherwise, it returns its third ar-
gument. The if function allows a program to contain a
different expression in different regions of the feature
space, and allows discontinuous programs, rather than
insisting on smooth functions.

2.3 Fitness Function

We used classification accuracy on the training set of
object cutout images as the fitness function. The classi-
fication accuracy of a genetic program classifier refers
to the number of object cutout images that are cor-
rectly classified by the genetic program classifier as a
proportion of the total number of object images in the
training set. According to this design, the best fitness
is 100%, meaning that all object images have been cor-
rectly recognised.

To calculate the classification accuracy of a genetic
program, one needs to determine how to translate the
program output into a class label. This is described in
section 3.

2.4 Parameters and Termination Criteria

The parameter values used in this approach are shown
in table 1.

In this approach, the learning/evolutionary process is
terminated when one of the following conditions is
met:

• The classification problem has been solved on the
training set, that is, all objects of interest in the
training set have been correctly classified without
any missing objects or false alarms for any class.

• The number of generations reaches the pre-
defined number, max-generations.

3 Classification Strategies

As mentioned earlier, each evolved genetic program
has a numeric output value, which needs to be trans-
lated into class labels. The methods which perform the
translation are referred to as classification strategies in
this paper.

This section briefly describes the static range selection
(SRS) method for multi-class classification commonly
used in many approaches, then details the two new clas-
sification strategies: centred dynamic range selection
(CDRS) and slotted dynamic range selection (SDRS).
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Table 1: Parameters used for GP training for the three databases.

Parameter Kinds Parameter Names Shape1 shape2 coin1 coin2 coin3

population-size 300 300 300 500 500
Search initial-max-depth 3 3 3 3 3

max-depth 5 5 5 6 6
Parameters max-generations 50 50 50 50 50

object-size 16×16 16×16 70×70 70×70 70×70
reproduction-rate 20% 20% 20% 20% 20%

Genetic cross-rate 50% 50% 50% 50% 50%
mutation-rate 30% 30% 30% 30% 30%

Parameters cross-term 15% 15% 15% 15% 15%
cross-func 85% 85% 85% 85% 85%

3.1 Static Range Selection

Introduced in [5, 6], the static range selection
(SRS) method has been used in many approaches
to classification problems with three or more
classes. In this method, two or more pre-defined
thresholds/boundaries are applied to the numeric
output value of the genetic program and linearly
translated the ranges/regions between these boundaries
as different classes. This method is simple because
these regions are set by the fixed boundaries at the
beginning of evolution and remain constant during
evolution.

If there are N classes in a classification task, these
classes are sequentially assigned to N regions
along the numeric output value space from some
negative numbers to positive numbers by N−1
thresholds/boundaries. Class 1 is allocated to the
region with all numbers less than the first boundary,
class 2 is allocated to all numbers between the first and
the second boundaries, and class N to the region with
all numbers greater than the last boundary N−1.

3.2 Centred Dynamic Range Selection

The first method we developed is the Centred Dynamic
Range Selection (CDRS), where the class boundaries
are dynamically determined by calculating the centre
of the program output values for each class. The algo-
rithm is presented as follow.

Step 1 Initialise the class boundaries as some random
values as in the SRS method.

Step 2 Evaluate each genetic program in the popula-
tion to obtain the program output result value for
each training example and the fitness value of the
program based on the fitness function.

Step 3 For each class c, calculate the centre of the
class according to equation 2:

Centerc =

M
∑

p=1

L
∑

µc=1
(Wp ×Resultpµc)

M
∑

p=1

L
∑

µc=1
Wp

(2)

where M is the number of programs in the pop-
ulation and p is the index, L is the number of
total number of training examples for class c and
µc is the index, Resultpµc is the the output value
of the pth program on training example µc for
class c, and Wp is a weight factor which reflect the
relative importance or contribution of the program
p over all the programs in the population and is
calculated by equation 3:

Wp = f itnessp + 50% (3)

where f itnessp is the fitness (classification accu-
racy) of program p on all the examples in the train-
ing set.

Step 4 Calculate the boundary between every two
classes by taking the middle point of the two
adjacent class centres.

Step 5 Classify the training examples based on the
class boundaries and calculate the new fitness
(classification accuracy) of each genetic program.

3.3 Slotted Dynamic Range Selection

The second new classification strategy is Slotted Dy-
namic Range Selection (SDRS). In this method, the
output value of a program is split into certain slots.
In our experiment, we used 100 slots derived from the
range of [-25, 25] with a step of 0.5. Since the input
features (terminals) are scaled into [-1, 1], the range
[-25, 25] is usually sufficient to represent the program
output. Each slot will be assigned to a value for each
class.

In the first step, this method evaluates each genetic pro-
gram in the population to obtain the program output
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value (Progout) for each training example and the fit-
ness value of the program based on the fitness function
and SRS method.

In the second step, the method calculates the slot val-
ues for each class (Array[slot][class]) based on
the program output value and the fitness value. The
algorithm for this step is as follows:

FOR each slot and each class

Array[slot][class] = 0

FOR each training example X {
FOR each program p {

ProgOut = execute program p with X as input

Round ProgOut to nearest slot

IF Progout > 25 THEN Progout = 25

IF Progout < -25 THEN Progout = -25

Array[slot][class] += Wp

}
}

Where Wp is calculated according to equation 3, re-
flecting the relative contribution of the genetic program
over all the programs.

In the third step, this method dynamically determines to
which class each slot belongs by simply taking the class
with the largest value at the slot. However in case a slot
does not hold any value, that is, no programs produce
any outputs at that slot for any training examples, then
this slot will be assigned to the class of the nearest
neighbouring slot, as shown in the following algorithm:

FOR slot = 1 to 100 {
FOR all class c {

IF all values of class c in

Array[slot][c] are zero {
Range[slot] = ‘‘?’’

}
ELSE {

Search c for which

Array[slot][c] is largest

Range[slot] = c

}
}

}

FOR slot = 1 to 100 {
IF Range[slot] = ‘‘?’’ {

Range[slot] = nearest value to slot

in the Range vector whose value

is not ‘‘?’’

}
}

It is important to note that these methods are applied to
the evolutionary process every five generations so that
at other generations the programs will be only updated
based on the evolutionary beam search.

4 Image Data Sets

We used four image databases in two groups in the
experiments. Example images are shown in figure 1.

(a) (b)

(c) (d)

Figure 1: Example images from Shapes (a), Coin1 (b),
Coin2 (c) and Coin3 (d).

4.1 Computer Generated Shape Datasets

The first group of images (figure 1 (a)) was generated
to give well defined objects against a noisy background.
The pixels of the objects were produced using a Gaus-
sian generator with different means and variances for
each class. Four classes of 713 small objects were cut
out from these images to form the classification data.
The four classes are: black circles, light grey squares,
white circles, and grey noisy background.

Two different data sets, shape1 and shape2 were con-
structed from this group of images. While set shape1
arranges the four classes in a natural order based on the
intensities, set shape2 out of this order.

4.2 NZ Coin Datasets

The second group of images has three NZ coin datasets.
These datasets were intended to be harder than group
1 and consist of scanned 5 cent and/or 10 cent New
Zealand coins. In this group, three data sets, coin1,
coin2 and coin3, were constructed to provide object
classification problems of increasing difficulty. Exam-
ple images for each of the three datasets are shown in
figure 1 (b), (c), and (d), respectively. The first coin
data set has 576 object cutout images of three classes:
10 cent heads, 10c tails, and a noisy background. The
second coin data set consists of five classes of object
cutouts: 5 cent heads, 5 cent tails, 10 cent heads and
10 cent tails, and a relatively uniform background. The
third coin data set also consists of five classes of object
cutouts, but the background is highly clustered, which
makes the classification problems much harder.

The objects in each of the these data sets were equally
split into three separate data sets: one third for the train-
ing set used directly for learning the genetic program
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classifiers, one third for the validation set for control-
ling overfitting, and one third for the test set for measur-
ing the performance of the learned program classifiers.

5 Results and Discussion

This section presents a series of results of the two
dynamic classification strategies on the five data sets
in the shape and coin image groups. These results
are compared with those for the static classification
method. For all experiments, we run 10 times and the
average results were presented.

5.1 Shape Data Sets

Table 2 shows the results of the three methods on
the two shape data sets. The first line shows that for
the Shape1 data set with 4 classes, the SRS method
achieved an average accuracy of 99.72% of 10 runs on
the test set and the average number of generations of
the 10 runs spent on the training process was 11.3.

Table 2: Results on the shape data sets.

Data set Classes Method Gens Accuracy
SRS 11.3 99.72%

Shape1 4 CDRS 11.9 99.67%
SDRS 20.5 98.06%
SRS 47.0 95.52%

Shape2 4 CDRS 18.4 98.35%
SDRS 29.8 99.53%

For the Shape1 data set, all the three classification
methods obtained nearly ideal results, reflecting the
fact that this classification problem is relatively easy.
In particular, the SRS method achieved the best
performance.

For the Shape2 data set, the two dynamic methods gave
very good results. While the SDRS method resulted in
better results than the CDRS method, it took a longer
time to learn. In particular, the static SRS method pro-
duced a much worse performance in both classification
accuracy and training time than the two dynamic meth-
ods because the classes in the data set were arranged
arbitrary rather than in a natural order. This suggests
that while the SRS method can perform well on rela-
tively easy classification problems with the classes ar-
ranged in a natural order, this method is not appropriate
for multi-class object classification problems with an
randomly arranged order of classes. The two dynamic
methods, however, can be applied in this case.

5.2 Coin Data Sets

Table 3 shows the results of the three methods on the
three coin databases.

Table 3: Results on the coin data sets.

Data set Classes Method Gens Accuracy
SRS 4.9 99.63%

Coin1 3 CDRS 7.4 99.89%
SDRS 16.4 99.63%
SRS 50 85.82%

Coin2 5 CDRS 50 88.10%
SDRS 50 87.41%
SRS 50 72.67%

Coin3 5 CDRS 50 78.17%
SDRS 47.3 77.83%

For data set Coin1, while all the three methods
achieved almost ideal performance, the CDRS gave the
best classification accuracy and the SRS method used
the shortest training time. For the second and the third
data sets Coin2 and Coin3, the two dynamic methods
clearly outperformed the static SRS method.

As expected, the classification performance on
the three coin datasets deteriorated as the degree
of difficulty of the object classification problems
increased.

5.3 Summary and Discussion

In summary, the results suggest that the SRS method
can perform well when there are a small number of ob-
ject classes and the classes are arranged in their natural
order (such as Shape1 and Coin1), but would perform
badly when the classes are out of this natural order (as
in Shape2) or when the classification problems become
more difficult or the number of classes become more
than four (such Coin2 and Coin3). The main reason is
that a high degree of non-linearity is required to map
the class regions on the program output to the object
features if the classes are arranged in different orders.
One would also expect SRS to perform well on two-
class problems.

The performances of all the three methods on the
Coin2 and Coin3 were worse than the Coin1 and the
two shape classification problems. Because these
problems were more difficult, more features should be
selected, extracted and added to the terminal set. Also
more powerful functions can also be applied in order to
obtain good performance. However, the investigation
of these developments is beyond the goal and the scope
of this paper.

6 Conclusions

The goal of this paper was to investigate and
explore dynamic classification methods in genetic
programming for multi-class object classification
problems, and to determine whether the dynamic
methods could outperform the current static method
for relatively difficult problems. Two dynamic

406 Image and Vision Computing NZ



methods, CDRS and SDRS, were developed and
implemented where the class boundaries were
dynamically determined during the evolutionary
process.

The results on the five object classification problems
in two groups of images showed that the commonly
used static method, SRS, performed very well when
there were only a small number of object classes and
the classes are arranged in their natural order, but
performed badly when the classes were arranged in
random order. The two dynamic methods, CDRS and
SDRS, performed better than the static SRS method on
most of the object classification tasks described here
and this is particularly true when the problems were
getting harder or the number of classes became larger.
They generally took longer training times. However, if
a much better performance can be obtained, this price
is worth to pay.

These results suggest that, for binary or tertiary ob-
ject classification problems with classes in natural or-
der, both the static method SRS and the two dynamic
methods, CDRS and SDRS, can be applied, and the
static method SRS is recommended if training time is
a critical factor. For other situations, particularly for
relatively difficult problems or when there are a large
number of object classes, the two dynamic methods are
recommended.

For future work, we will investigate whether the per-
formance on the relatively difficult coin data sets can
be improved if more features are added to the terminal
set. We will also investigate the power and reliabil-
ity of the two dynamic methods on even more diffi-
cult, real-world image classification problems such as
face recognition problems and satellite image detec-
tion problems, and compare the performance with other
long-term established methods such as decision trees,
neural networks, and support vector machines.
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