
Efficient Collision Detection for Skeletally Animated Models
in Interactive Environments

Vadim Macagon1 and Burkhard Wünsche2

Graphics Group, University of Auckland, Auckland, New Zealand
1vadim_mcagon@hotmail.com, 2burkhard@cs.auckland.ac.nz

Abstract

Skeletally animated polygonal models are common in interactive 3d environments such as computer games. This

paper presents an efficient technique for performing collision detection for such models with the possibility of

integrating a skeletal animation system (based on pre-generated animations) with an existing physics engine in

order to provide physically realistic responses to collisions. The results are useful for 3d simulations in the areas

of computer graphics, sport science, and computer games.

Keywords: collision detection, skeletally animated models, interactive immerse environments

1 Introduction

Collision detection is of extreme importance in visual

simulations of 3d environments where various objects

can interact with each other. The choice of a collision

detection technique depends on the complexity and 3d

representation of objects and the information required

for the simulation of an object’s response to a

collision such as elastic deformation.

Collision detection can be divided into two phases:

the broad phase quickly eliminates all objects that

cannot possibly collide within a time frame. Examples

are bounding volumes, octrees, BSP trees [1] and

Hubbard’s space-time bounds [2]. The narrow phase

examines pairs of objects identified as potentially

colliding and detects (if necessary) where and how the

objects collide. Examples are separating planes [2]

and Lin-Canny closest features tracking [3].

Presently there are a number of algorithms and

libraries that provide fast collision detection in 3d

environments, however, they typically require the 3d

objects to consist of static geometry and they treat

each object as one polygon mesh [4] or as a collection

of basic primitive shapes such as spheres, capsules

and boxes. Typically when a collision between

objects is detected a list of pairs of polygons that

intersect is produced, including for some libraries the

intersection points. These results are not sufficient to

obtain a higher-level description of the interaction

between objects. In this work we will suggest a

solution to this problem for objects, which consist of

deformable meshes that represent humanoid models.

As a simple scenario we consider a soccer game: most

of the time each player is in contact with the ground,

the soccer ball, or other players. Various types of

collisions occur and must be handled in order to make

the soccer ball fly with each kick and to prevent

players from falling through the ground. For realistic

simulations we need to know which limbs, and which

parts of the limbs, are involved in an impact so that

we can model the response of the players to the

various impacts they experience. In order to obtain

higher-level collision information the polygon mesh

that makes up the player model must be subdivided

into a number of groups representing individual limbs

or limb parts.

When a collision between objects has been detected

the objects need to be repositioned to ensure they do

not interpenetrate each other unless required.

Furthermore in the case of humanoid models it must

be possible to change the pose of a model in response

to impacts.

With animated articulated models there are generally

two ways to respond to collisions. The simple way of

producing a response to an impact involves creating a

collection of pre-canned animations (i.e. pre-

recorded), and playing one of these depending on

which limb or body part is hit; this has been widely

used in computer games. However since there is only

a fixed set of animations the end user will quickly

notice that the responses to some impacts are not what

one would expect to see in the real world.

An alternative approach to producing more realistic

responses involves the use of a physics engine. The

player model can be approximated by a collection of

rigid bodies that are connected together and are

subjected to physical simulation. This approach

doesn’t restrict the player model to a set of pre-canned

animations; instead the player’s pose can be changed

in an infinite number of ways based not only on the

points of impact, but also the force of the impact.

Our work uses the Open Dynamics Engine (ODE) [5]

in order to provide physically realistic responses upon

impact of the humanoid player models with their

environment. ODE is a free, industrial quality library

for simulating articulated rigid body dynamics. The

player models in our simulation will be represented in

378 Image and Vision Computing NZ

ODE as a collection of rigid bodies, connected

together by a number of joints that constrain the

positions and orientations of the rigid bodies. While

ODE has its own collision detection facilities they are

not sufficient for interactive animations like the one

described in our example scenario. Instead the results

obtained with our algorithm are used by ODE, which

will in turn try to ensure all constraints are satisfied

and hence produce a visually realistic response to

collisions in an interactive simulation.

We implemented our simulations using the Nebula

Device [6], which is a free modular framework for

building 3d visualizations and game engines. Nebula

provides a character animation system and contains a

collision detection system that deals with static

geometry by making use of the Optimised Collision

Detection (OPCODE) [4] library. However the

collision system is currently incapable of handling

animated characters and our work presents a solution

for this.

2 Skeletal Animation

Each player model consists of a single mesh that is

deformed based on the underlying skeleton.

Animation of the character using pre-canned character

animation works by changing the pose of the skeleton.

It is important to understand how this system works in

detail since the collision detection and response

techniques presented later on are geared towards

working with such models.

A model’s skeleton is made up of a collection of

joints, arranged in a hierarchical structure. Figure 1

shows the make-up of a player model. The bones are

just a visual aid to make it easier to see the

relationships between the joints and are typically only

used by animators during the creation of the

animations. Every vertex in the mesh is weighted by

one to four joints (which is the maximum allowed

number by Nebula) and the final position of each

vertex (in model space) will be determined by the

current pose of the skeleton.

Each joint in the skeleton has two rotation and two

translation components, and all joints except for the

root joint have a parent joint. A rotation component is

described by a quaternion, and a translation

component is described by a 3-vector. One pair of

rotation/translation components contains the initial

position of the joint relative to its parent, and its initial

orientation. The second pair of rotation/translation

components contains the current position of each joint

relative to its parent, and its current orientation. The

algorithm for determining the final position of each

vertex in the mesh is known as skinning and works as

shown in Listing 1.

Tir and Tit represent the initial joint rotation and

translation components, respectively.

Ti is known as the pose matrix and specifies the

initial position of the joint in model space.

Tip is the pose matrix of the parent joint.

Tc, Tcr, Tct, Tcp are the equivalent matrices for

the current joint rotation and translation.

Ts is known as the skinning matrix, and

represents the transformation that needs to be

applied to the initial joint pose in order to obtain

the current joint pose (Tc).

vi and vc are the initial and current position of the

vertex v in model space.

wjv is the weight (in the range 0-1) of a joint j on

the vertex v. For each vertex the sum of the

weights should add up to 1.

In this listing and throughout the remainder of this

paper matrices are homogeneous and are defined row-

wise. The Ti* matrices need only be computed once

when the character skeleton is created

The current rotation and translation components of

each joint are obtained every frame from one or more

animation curves. Each animation curve is obtained

by recording the rotation/translation components of

each joint at key frames of the animation. Rotation

and translation components are obtained from

separate curves. If multiple curves are used the

samples obtained from each curve are blended

together. If the skeleton bones remain the same length

for each frame then only an animation curve for the

rotation component is necessary for most joints.

Hence an animation that runs at 30 fps and lasts for 2

seconds would have an animation curve for the

rotation component that contains 60 entries (assuming

there are 60 key frames), with each entry specifying a

Joint

Bone

Mesh

Figure 1: Low Resolution Character Model.

for each joint j

 let Ti = Tir Tit

 if j has a parent

 let Ti = Ti Tip

 let Tc = Tcr Tct

 if j has a parent

let Tc = Tc Tcp

 let Ts = Ti
-1 Tc

for each vertex v

let vc = (0,0,0)

for each joint j that v is weighted by

let vc = vc + vi
T Ts wjv

Listing 1: Skinning

Palmerston North, November 2003 379

quaternion that describes the rotation applied by the

joint at that key frame.

3 Collision Detection

In a simulation where one or more objects are

moving, the collision detection scheme must be

capable of detecting collisions between stationary and

moving objects. When checking for collisions

between stationary objects it is sufficient to only

consider their current position at the time at which the

check is made, so the collision check becomes an

intersection check. However with moving objects

both the current position and the position at the

previous animation step must be considered.

Figure 2 illustrates that an intersection test between

the two spheres at time t2 is not sufficient since the

collision at time tc would be missed. Instead a number

of tests along the object displacement vectors are

performed to ensure a collision is detected if it has

occurred between t1 and t2. In practice, detection of a

contact between two moving spheres can be done

using a simpler method [4]. Unfortunately most

objects in our simulation consist of complex geometry

so intersection tests aren’t as simple as they are for

spheres. To improve performance a bounding sphere

can encapsulate geometry and that sphere is then used

for rough collision detection (other bounding volumes

could be used instead). However, relying on the

sphere alone would produce phantom collisions

because the sphere is only an approximation of the

real object and thus there is likely to be empty space

inside the sphere that is not occupied by the object.

Nebula’s collision detection system associates a

bounding sphere with every object which may be

involved in a collision at one time or the other and

provides two methods to check for collision between

a pair of moving objects, the quick swept sphere

approach [7] or a more accurate (but slower) approach

that places an upper bound on the maximum number

of intersection tests that will be done and only

performs multiple tests along the displacement vector

if the object has travelled more than 1/8th its bounding

sphere’s radius [8].

In a simulation containing n different objects (that

may collide with each other) a brute force collision

detection system will have to test for collision

between every pair of objects resulting in an O(n2)

algorithm. If n is large and the objects themselves are

complex the collision detection will be unacceptably

slow. Spatial subdivision is one way to speed up

collision detection. For our scenario it was deemed

unnecessary to use an explicit spatial subdivision

scheme because the soccer simulation is relatively

small and the collision system in Nebula already uses

some “early out” tests as described next.

As mentioned previously the Nebula collision

detection system associates a sphere with each object

and keeps track of both the current and previous

position of each sphere. Additionally each object

belongs to a collision class, and the end user is able to

specify the types of collision checks to be performed

between each pair of classes, or whether collision

between any pair of classes should be ignored

entirely. Each frame the system computes an axis-

aligned bounding box (AABB) that encloses the two

spheres (the past and the present). A collision can

only occur between two moving objects if the

corresponding AABBs overlap along all 3 global

axes, existence of such an overlap would indicate that

the two objects might have occupied the same space

at the same time and further tests would need to be

performed to determine whether they actually

collided. The use of AABB boxes in this way to speed

up collision detection is typically known as Sweep

and Prune [9]. All objects are kept sorted by the

system along the global x-axis using the

corresponding AABBs. Collisions between stationary

objects can be detected by checking for an

intersection between the objects, and collision

between moving objects can be handled by checking

for collision between so called stationary objects in a

number of snapshots of the moving objects taken in

the time between the last and the current frame.

3.1 The Character Collide Shape

The deformable mesh of each character in the soccer

simulation consists of up to 2000 triangles. Brute-

force collision detection is therefore impossible and

we use instead the following two methods to improve

interactivity: first the visual representation of the

character (figure 3 left) is separated from the

representation used for intersection tests (the collision

mesh). The collision mesh is a low-resolution version

of the original character mesh and in our case consists

of around 280 triangles (figure 3 right).

Figure 3: The high (left) and low (right) resolution

mesh.

Figure 2: Collision between moving objects.

380 Image and Vision Computing NZ

Additionally the collision mesh is subdivided so that

only parts of the mesh are tested when necessary and

triangle/triangle intersection tests are eliminated

entirely.

The Nebula collision detection system uses the term

collide shape to refer to the data that describes the

shape (i.e. geometry) of an object that may be

involved in collisions. Nebula is currently only

capable of dealing with collide shapes that consist of

non-deformable geometry and are described by a

triangle mesh and an AABB tree (that is built by

OPCODE). Therefore a new collide shape was

devised to represent characters.

The new collide shape consists of 3 levels, and is used

by the collision detection system for performing

intersection tests between characters and other non-

deformable objects. Level-1, shown in figure 4, is

made up of a collection of bounding volumes (spheres

and capsules), each bounding volume contains a sub-

group of triangles from level-2 (the collision mesh).

The remaining level-3 volume consists of another

collection of volumes (spheres and capsules).

Level-1 bounding volumes are used to subdivide the

collision mesh into groups, such that each group

coincides with a body part. This subdivision serves

two distinct purposes. First of all by subdividing a

character into parts the collision detection method

doesn’t always have to process every triangle in the

collision mesh, since it’s rare for all body parts to be

in contact with something at the same time. Secondly,

higher-level collision information becomes available,

so the collision system can tell the user not just

whether a character collided with some object, but

also which parts of the character collided with that

object. This additional information is extremely useful

in trying to create a realistic simulation. For instance,

in the soccer simulation the soccer player could be

made to limp slightly if another player hits him in the

foot, or could get a bloody nose as a result of the

soccer ball hitting him in the face.

The level-1 bounding volumes are attached to the

character skeleton (and move with it) by associating

each volume with a skeleton joint and positioning/

orienting the volume relative to that joint. Figure 5

and the listing 2 provide a simple example of

computing the position of the bounding volume for

the wrist (in this case we assume there are only 3

joints in the whole skeleton).

The position of the sphere volume in model space is

obtained by flattening the joint hierarchy at the joint

to which the volume is attached, just as it is done

during vertex skinning. Position and orientation is

computed in a similar way for capsule volumes, the

only difference being that two points are transformed

instead of one.

Tflat is the result of flattening the joint hierarchy

at the wrist joint.

usphere and vsphere are the coordinates of the centre

of the sphere volume in the local wrist joint

coordinate system and the model coordinate

system, respectively.

The collision mesh for a character is classified as

level-2 and is shown in figure 6. The mesh can be

used to obtain more detailed information about which

component of a character collided with an object. This

Tflat = T2 T1 T0

vsphere = usphere
T

Tflat

Figure 5: Attaching a volume to a skeleton joint.

Listing 2: Computation of the position of a

sphere in model space.

Figure 4: Level -1 bounding volumes for a character.

Figure 6: Level-2 collision mesh and triangle

groups.

Palmerston North, November 2003 381

IntersectCharacters(characterA, characterB)

{

 Transform level-1 and level-3 volumes to world space

 For each level-1 volume volA-1 from characterA

 For each level-1 volume volB-1 from characterB

 IntersectLevel1(volA-1, volB-1)

}

IntersectLevel1(volA-1, volB-1)

{

 if volA-1 and volB-1 overlap

 transform all triangles in volB-1 to world space

 for each Level-3 volume volA-3 in volA-1

 for each triangle tri in volB-1

 check for intersection between volA-3 and tri

 if intersection exists store the contact point,

 contact normal and depth

 if contact points are found then

 combine all contacts into a single contact

 else

 transform all triangles in volA-1 to world space

 for each level-3 volume volB-3 in volB-1

 for each triangle tri in volA-1

 check for intersection between volB-3 and tri

 if intersection exists store the contact point,

 contact normal and depth

 if contact points are found then

 combine all contacts into a single contact

}

is achieved by tagging each triangle in the collision

mesh with a group identifier that allows for further

subdivision of the collision mesh. For example the

triangles belonging to the volume that bounds the left

forearm can be separated into two groups, one group

would consist of the triangles on the outer side of the

forearm, the other would consist of the ones on the

inner side. In the extreme each triangle can be

identified uniquely. The extra information can be used

to provide visual feedback to the user whenever the

character experiences an impact by adding a decal to

the character’s texture at the point of impact.

The final level-3, shown in figure 7, is made up of a

collection of volumes which are bound to the

character skeleton just like level-1 volumes. However,

each level-1 volume can consist of multiple level-3

volumes. Unlike the level-1 volumes level-3 volumes

do not contain triangles, and exist solely for the

purpose of computing an estimate of the penetration

depth between a character and some other object

whenever a collision occurs, which is used for

determining the collision response [8]. Ideally the

level-3 volumes should approximate the collision

mesh as closely as possible.

During the search for an intersection between a

character and some object, the bounding volumes

provide a spatial subdivision that allows the fast

elimination of whole groups of triangles at once if the

bounding volumes enclosing these groups don’t

overlap with the object. In order to provide an

significant advantage over the brute force approach to

finding intersections the bounding volumes need to

satisfy a number of properties. The bounding volumes

should encapsulate triangles as tightly as possible in

order to minimize the number of “false positives”

which leads to checking all triangles in the volume.

The test to check whether two volumes overlap must

be quick and the transformation of volumes as the

character is animated must be computationally

efficient. After some consideration we chose spheres

and capsules as bounding volumes. The sphere has a

quick overlap test and only the sphere centre needs to

be transformed during animation. Unfortunately

spheres usually do not provide a very tight fit. The

capsule can be described by a line segment and a

radius, and has a pretty quick overlap test (figure 8).

Only the two endpoints of the line segments need to

be transformed during animation. Capsules provide a

better fit than spheres in many cases. Furthermore

capsules and spheres allow for quick computation of

penetration depth when two volumes or a volume and

a triangle intersect (the depth value is necessary for

providing proper collision response).

Axis aligned bounding boxes (AABB) [10] and

oriented bounding boxes (OBB) [11] were also taken

into consideration. However, when the AABB needs

to be transformed during animation there are two

options. One is to compute a new AABB by finding

the extents of the transformed geometry, but doing so

is computationally expensive. Alternatively the

previous AABB is transformed and a new one is

computed based on the transformed vertices of the old

AABB, but this may produce an AABB that is twice

as large as the original. Oriented bounding boxes

don’t suffer from this “growing” problem, but they

take up more memory and are more expensive to

transform [12].

Figure 7: Level-3 volumes (front & right view).

Listing 3: Finding an intersection between characters.

Figure 8: Overlap of spheres and capsules.

382 Image and Vision Computing NZ

IntersectCharacterOpcodeShape(character, opcShape)

{

transform all level-1 and level-3 volumes in character

 to world space

 for each level-1 volume volA-1 from character

 obtain a list of triangles from opcShape that

 overlap with volA-1

 transform touched triangles to world space (if any)

 for each level-3 volume volA-3 in volA-1

 for each triangle tri of the transformed triangles

 check for intersection between volA-3 and tri

 if intersection exists store the contact point,

 contact normal and depth

 if contact points were found then

 combine all contacts into a single contact

}

3.2 The Character Intersection

Once the collide shape for a character has been

defined the method in Listing 3 is used to find

intersections with another character (intersection tests

are done in world space).

The method for finding the intersections between a

character and a non-deformable object is slightly

different and shown in listing 4. Recall that non-

deformable objects are handled by OPCODE, which

builds an AABB tree from the mesh that is then used

to quickly obtain a list of potentially colliding

triangles.

During the construction of the collide shape for the

soccer player character we found that many level-1

volumes contained only one level-3 volume, such was

the case for legs and arms. The methods above can be

improved by checking for this case and avoiding the

level-1 overlap test altogether. Furthermore for

character intersection it might be beneficial to buffer

the transformed triangles. This means that if a

character is involved in collisions with multiple

objects the relevant parts of the collision mesh only

need to be skinned once after the skeleton is

repositioned for each frame.

4 Results and Conclusion

We have introduced a new collision detection

algorithm for skeletally animated polygonal models.

The technique described in this paper has been

implemented as part of a soccer simulation. Initial

results are encouraging and show that the collision

detection techniques discussed are effective in

practice and can be integrated with a physics engine

to provide physically realistic responses to collisions.

Many more improvements are possible and we are

particularly interested in exploiting temporal

coherence. It might also be worth considering other

collision detection algorithms which compute the

penetration depth between complex objects and using

one of them instead of the approximation provided by

level-3 volumes as described in this paper. An

example is a novel variant of GJK presented in [13].

Work on the integration of the ODE physics engine

with Nebula’s skeletal animation system for the

purpose of physically-based simulations is currently

still in progress. A demo and source can be obtained

from www.steelronin.com.

5 References

[1] Watt, A. and Policarpo, F., 3D Games: Real-time

Rendering and Software Technology, Addison-

Wesley (2001).

[2] Hubbard, P. M., “Collision detection for interac-

tive graphics applications”, IEEE Transactions
on Visualization and Computer Graphics, 1(3),

pp 218-230, September (1995).

[3] Lin, M. C., “Efficient collision detection for

animation and robotics”, PhD Thesis, University

of California, Berkeley (1993).

[4] Terdima, P., “OPCODE home page”, http://www

.codercorner.com/Opcode.htm, visited on

20/08/2003.

[5] Smith, R. et al., “Open Dynamics Engine home

page”, http://opende.sourceforge.net, visited on

20/08/2003.

[6] The Nebula Device Wiki., “home page”,

http://nebuladevice.sourceforge.net, visited on

20/08/2003.

[7] Gomez, M., “Simple intersection tests for

games”, Gamasutra.com, October 18, (1999).

[8] Macagon, V., “Collision detection and response

of skeletally animated models”, FoS Summer
Scholarship Project Report, University of

Auckland, March (2003).

[9] Cohen, J.D., Lin, M.C., Manocha, D., Ponamgi,

M.K., “I-COLLIDE: An interactive and exact

collision detection system for large-scale

environments”, Proceedings of ACM Interactive

3D Graphics, pp 189-196 (1995).

[10] Lander, J., “When two hearts collide: axis

aligned bounding boxes”, Gamasutra.com,

February 3, (2000).

[11] Bobic, N., “Advanced Collision Detection

Techniques”, Gamasutra.com, March 30, (2000).

[12] van den Bergen, G., “Efficient collision detection

of complex deformable models using AABB

trees”, Journal of Graphics Tools, 2(4), pp 1-14

(1997).

[13] van den Bergen, G., “Proximity queries and

penetration depth computation on 3d game

objects”, Proceedings of the Game Developers

Conference 2001, http://www.gdconf.com/archi

ves/2001/vdbergen/vdbergen.doc, visited on

20/08/2003.

Listing 4: Detect character/OPCODE shape

intersection.

Palmerston North, November 2003 383

