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Abstract

Skeletally animated polygonal models are common in interactive 3d environments such as computer games. This 

paper presents an efficient technique for performing collision detection for such models with the possibility of 

integrating a skeletal animation system (based on pre-generated animations) with an existing physics engine in 

order to provide physically realistic responses to collisions.  The results are useful for 3d simulations in the areas 

of computer graphics, sport science, and computer games. 
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1 Introduction 

Collision detection is of extreme importance in visual 

simulations of 3d environments where various objects 

can interact with each other. The choice of a collision 

detection technique depends on the complexity and 3d 

representation of objects and the information required 

for the simulation of an object’s response to a 

collision such as elastic deformation.  

Collision detection can be divided into two phases: 

the broad phase quickly eliminates all objects that 

cannot possibly collide within a time frame. Examples 

are bounding volumes, octrees, BSP trees [1] and 

Hubbard’s space-time bounds [2]. The narrow phase 

examines pairs of objects identified as potentially 

colliding and detects (if necessary) where and how the 

objects collide. Examples are separating planes [2] 

and Lin-Canny closest features tracking [3].  

Presently there are a number of algorithms and 

libraries that provide fast collision detection in 3d 

environments, however, they typically require the 3d 

objects to consist of static geometry and they treat 

each object as one polygon mesh [4] or as a collection 

of basic primitive shapes such as spheres, capsules 

and boxes. Typically when a collision between 

objects is detected a list of pairs of polygons that 

intersect is produced, including for some libraries the 

intersection points. These results are not sufficient to 

obtain a higher-level description of the interaction 

between objects. In this work we will suggest a 

solution to this problem for objects, which consist of 

deformable meshes that represent humanoid models. 

As a simple scenario we consider a soccer game: most 

of the time each player is in contact with the ground, 

the soccer ball, or other players. Various types of 

collisions occur and must be handled in order to make 

the soccer ball fly with each kick and to prevent 

players from falling through the ground. For realistic 

simulations we need to know which limbs, and which 

parts of the limbs, are involved in an impact so that 

we can model the response of the players to the 

various impacts they experience. In order to obtain 

higher-level collision information the polygon mesh 

that makes up the player model must be subdivided 

into a number of groups representing individual limbs 

or limb parts.  

When a collision between objects has been detected 

the objects need to be repositioned to ensure they do 

not interpenetrate each other unless required. 

Furthermore in the case of humanoid models it must 

be possible to change the pose of a model in response 

to impacts.  

With animated articulated models there are generally 

two ways to respond to collisions. The simple way of 

producing a response to an impact involves creating a 

collection of pre-canned animations (i.e. pre-

recorded), and playing one of these depending on 

which limb or body part is hit; this has been widely 

used in computer games. However since there is only 

a fixed set of animations the end user will quickly 

notice that the responses to some impacts are not what 

one would expect to see in the real world.  

An alternative approach to producing more realistic 

responses involves the use of a physics engine. The 

player model can be approximated by a collection of 

rigid bodies that are connected together and are 

subjected to physical simulation. This approach 

doesn’t restrict the player model to a set of pre-canned 

animations; instead the player’s pose can be changed 

in an infinite number of ways based not only on the 

points of impact, but also the force of the impact. 

Our work uses the Open Dynamics Engine (ODE) [5] 

in order to provide physically realistic responses upon 

impact of the humanoid player models with their 

environment. ODE is a free, industrial quality library 

for simulating articulated rigid body dynamics. The

player models in our simulation will be represented in 
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ODE as a collection of rigid bodies, connected 

together by a number of joints that constrain the 

positions and orientations of the rigid bodies. While 

ODE has its own collision detection facilities they are 

not sufficient for interactive animations like the one 

described in our example scenario. Instead the results 

obtained with our algorithm are used by ODE, which 

will in turn try to ensure all constraints are satisfied 

and hence produce a visually realistic response to 

collisions in an interactive simulation.  

We implemented our simulations using the Nebula 

Device [6], which is a free modular framework for 

building 3d visualizations and game engines. Nebula 

provides a character animation system and contains a 

collision detection system that deals with static 

geometry by making use of the Optimised Collision 

Detection (OPCODE) [4] library. However the 

collision system is currently incapable of handling 

animated characters and our work presents a solution 

for this. 

2 Skeletal Animation 

Each player model consists of a single mesh that is 

deformed based on the underlying skeleton. 

Animation of the character using pre-canned character 

animation works by changing the pose of the skeleton. 

It is important to understand how this system works in 

detail since the collision detection and response 

techniques presented later on are geared towards 

working with such models. 

A model’s skeleton is made up of a collection of 

joints, arranged in a hierarchical structure. Figure 1 

shows the make-up of a player model. The bones are 

just a visual aid to make it easier to see the 

relationships between the joints and are typically only 

used by animators during the creation of the 

animations. Every vertex in the mesh is weighted by 

one to four joints (which is the maximum allowed 

number by Nebula) and the final position of each 

vertex (in model space) will be determined by the 

current pose of the skeleton.  

Each joint in the skeleton has two rotation and two 

translation components, and all joints except for the 

root joint have a parent joint. A rotation component is 

described by a quaternion, and a translation 

component is described by a 3-vector. One pair of 

rotation/translation components contains the initial 

position of the joint relative to its parent, and its initial 

orientation. The second pair of rotation/translation 

components contains the current position of each joint 

relative to its parent, and its current orientation. The 

algorithm for determining the final position of each 

vertex in the mesh is known as skinning and works as 

shown in Listing 1. 

Tir and Tit represent the initial joint rotation and 

translation components, respectively.  

Ti is known as the pose matrix and specifies the 

initial position of the joint in model space.  

Tip is the pose matrix of the parent joint.  

Tc, Tcr, Tct, Tcp are the equivalent matrices for 

the current joint rotation and translation. 

Ts is known as the skinning matrix, and 

represents the transformation that needs to be 

applied to the initial joint pose in order to obtain 

the current joint pose (Tc).

vi and vc are the initial and current position of the 

vertex v in model space. 

wjv is the weight (in the range 0-1) of a joint j on 

the vertex v. For each vertex the sum of the 

weights should add up to 1. 

In this listing and throughout the remainder of this 

paper matrices are homogeneous and are defined row-

wise. The Ti* matrices need only be computed once 

when the character skeleton is created 

The current rotation and translation components of 

each joint are obtained every frame from one or more 

animation curves. Each animation curve is obtained 

by recording the rotation/translation components of 

each joint at key frames of the animation. Rotation 

and translation components are obtained from 

separate curves. If multiple curves are used the 

samples obtained from each curve are blended 

together. If the skeleton bones remain the same length 

for each frame then only an animation curve for the 

rotation component is necessary for most joints. 

Hence an animation that runs at 30 fps and lasts for 2 

seconds would have an animation curve for the 

rotation component that contains 60 entries (assuming 

there are 60 key frames), with each entry specifying a 

Joint

Bone

Mesh

Figure 1: Low Resolution Character Model.

for each joint j

 let Ti = Tir Tit

 if j has a parent 

  let Ti = Ti Tip

 let Tc = Tcr Tct

 if j has a parent 

let Tc = Tc Tcp

 let Ts = Ti
-1 Tc

for each vertex v

let vc = (0,0,0)

for each joint j that v is weighted by 

let vc = vc + vi
T Ts wjv

Listing 1: Skinning 
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quaternion that describes the rotation applied by the 

joint at that key frame. 

3 Collision Detection 

In a simulation where one or more objects are 

moving, the collision detection scheme must be 

capable of detecting collisions between stationary and 

moving objects. When checking for collisions 

between stationary objects it is sufficient to only 

consider their current position at the time at which the 

check is made, so the collision check becomes an 

intersection check. However with moving objects 

both the current position and the position at the 

previous animation step must be considered.  

Figure 2 illustrates that an intersection test between 

the two spheres at time t2 is not sufficient since the 

collision at time tc would be missed. Instead a number 

of tests along the object displacement vectors are 

performed to ensure a collision is detected if it has 

occurred between t1 and t2. In practice, detection of a 

contact between two moving spheres can be done 

using a simpler method [4]. Unfortunately most 

objects in our simulation consist of complex geometry 

so intersection tests aren’t as simple as they are for 

spheres. To improve performance a bounding sphere 

can encapsulate geometry and that sphere is then used 

for rough collision detection (other bounding volumes 

could be used instead). However, relying on the 

sphere alone would produce phantom collisions 

because the sphere is only an approximation of the 

real object and thus there is likely to be empty space 

inside the sphere that is not occupied by the object.  

Nebula’s collision detection system associates a 

bounding sphere with every object which may be 

involved in a collision at one time or the other and 

provides two methods to check for collision between 

a pair of moving objects, the quick swept sphere 

approach [7] or a more accurate (but slower) approach 

that places an upper bound on the maximum number 

of intersection tests that will be done and only 

performs multiple tests along the displacement vector 

if the object has travelled more than 1/8th its bounding 

sphere’s radius [8].  

In a simulation containing n different objects (that 

may collide with each other) a brute force collision 

detection system will have to test for collision 

between every pair of objects resulting in an O(n2)

algorithm. If n is large and the objects themselves are 

complex the collision detection will be unacceptably 

slow. Spatial subdivision is one way to speed up 

collision detection. For our scenario it was deemed 

unnecessary to use an explicit spatial subdivision 

scheme because the soccer simulation is relatively 

small and the collision system in Nebula already uses 

some “early out” tests as described next. 

As mentioned previously the Nebula collision 

detection system associates a sphere with each object 

and keeps track of both the current and previous 

position of each sphere. Additionally each object 

belongs to a collision class, and the end user is able to 

specify the types of collision checks to be performed 

between each pair of classes, or whether collision 

between any pair of classes should be ignored 

entirely. Each frame the system computes an axis-

aligned bounding box (AABB) that encloses the two 

spheres (the past and the present). A collision can 

only occur between two moving objects if the 

corresponding AABBs overlap along all 3 global 

axes, existence of such an overlap would indicate that 

the two objects might have occupied the same space 

at the same time and further tests would need to be 

performed to determine whether they actually 

collided. The use of AABB boxes in this way to speed 

up collision detection is typically known as Sweep 

and Prune [9]. All objects are kept sorted by the 

system along the global x-axis using the 

corresponding AABBs. Collisions between stationary 

objects can be detected by checking for an 

intersection between the objects, and collision 

between moving objects can be handled by checking 

for collision between so called stationary objects in a 

number of snapshots of the moving objects taken in 

the time between the last and the current frame. 

3.1 The Character Collide Shape 

The deformable mesh of each character in the soccer 

simulation consists of up to 2000 triangles. Brute-

force collision detection is therefore impossible and 

we use instead the following two methods to improve 

interactivity: first the visual representation of the 

character (figure 3 left) is separated from the 

representation used for intersection tests (the collision 

mesh). The collision mesh is a low-resolution version 

of the original character mesh and in our case consists 

of around 280 triangles (figure 3 right).  

Figure 3: The high (left) and low (right) resolution 

mesh. 

Figure 2: Collision between moving objects.
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Additionally the collision mesh is subdivided so that 

only parts of the mesh are tested when necessary and 

triangle/triangle intersection tests are eliminated 

entirely.

The Nebula collision detection system uses the term 

collide shape to refer to the data that describes the 

shape (i.e. geometry) of an object that may be 

involved in collisions. Nebula is currently only 

capable of dealing with collide shapes that consist of 

non-deformable geometry and are described by a 

triangle mesh and an AABB tree (that is built by 

OPCODE). Therefore a new collide shape was 

devised to represent characters.  

The new collide shape consists of 3 levels, and is used 

by the collision detection system for performing 

intersection tests between characters and other non-

deformable objects. Level-1, shown in figure 4, is 

made up of a collection of bounding volumes (spheres 

and capsules), each bounding volume contains a sub-

group of triangles from level-2 (the collision mesh). 

The remaining level-3 volume consists of another 

collection of volumes (spheres and capsules). 

Level-1 bounding volumes are used to subdivide the 

collision mesh into groups, such that each group 

coincides with a body part. This subdivision serves 

two distinct purposes. First of all by subdividing a 

character into parts the collision detection method 

doesn’t always have to process every triangle in the 

collision mesh, since it’s rare for all body parts to be 

in contact with something at the same time. Secondly, 

higher-level collision information becomes available, 

so the collision system can tell the user not just 

whether a character collided with some object, but 

also which parts of the character collided with that 

object. This additional information is extremely useful 

in trying to create a realistic simulation. For instance, 

in the soccer simulation the soccer player could be 

made to limp slightly if another player hits him in the 

foot, or could get a bloody nose as a result of the 

soccer ball hitting him in the face.  

The level-1 bounding volumes are attached to the 

character skeleton (and move with it) by associating 

each volume with a skeleton joint and positioning/ 

orienting the volume relative to that joint. Figure 5 

and the listing 2 provide a simple example of 

computing the position of the bounding volume for 

the wrist (in this case we assume there are only 3 

joints in the whole skeleton). 

The position of the sphere volume in model space is 

obtained by flattening the joint hierarchy at the joint 

to which the volume is attached, just as it is done 

during vertex skinning. Position and orientation is 

computed in a similar way for capsule volumes, the 

only difference being that two points are transformed 

instead of one. 

Tflat is the result of flattening the joint hierarchy 

at the wrist joint. 

usphere and vsphere are the coordinates of the centre 

of the sphere volume in the local wrist joint 

coordinate system and the model coordinate 

system, respectively. 

The collision mesh for a character is classified as 

level-2 and is shown in figure 6.  The mesh can be 

used to obtain more detailed information about which 

component of a character collided with an object. This 

Tflat = T2 T1 T0

vsphere = usphere
T

Tflat

Figure 5: Attaching a volume to a skeleton joint. 

Listing 2: Computation of the position of a 

sphere in model space.

Figure 4: Level -1 bounding volumes for a character. 

Figure 6: Level-2 collision mesh and triangle 

groups. 
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IntersectCharacters( characterA, characterB ) 

{

    Transform level-1 and level-3 volumes to world space 

    For each level-1 volume volA-1 from characterA

        For each level-1 volume volB-1 from characterB

            IntersectLevel1( volA-1, volB-1 ) 

}

IntersectLevel1( volA-1, volB-1 ) 

{

    if volA-1 and volB-1 overlap 

        transform all triangles in volB-1 to world space  

        for each Level-3 volume volA-3 in volA-1

            for each triangle tri in volB-1

                check for intersection between volA-3 and tri

                if intersection exists store the contact point,  

                    contact normal and depth 

        if contact points are found then 

            combine all contacts into a single contact

        else 

            transform all triangles in volA-1 to world space 

            for each level-3 volume volB-3 in volB-1

                for each triangle tri in volA-1

                    check for intersection between volB-3 and tri

                    if intersection exists store the contact point, 

                         contact normal and depth 

            if contact points are found then 

                combine all contacts into a single contact

}

is achieved by tagging each triangle in the collision 

mesh with a group identifier that allows for further 

subdivision of the collision mesh. For example the 

triangles belonging to the volume that bounds the left 

forearm can be separated into two groups, one group 

would consist of the triangles on the outer side of the 

forearm, the other would consist of the ones on the 

inner side. In the extreme each triangle can be 

identified uniquely. The extra information can be used 

to provide visual feedback to the user whenever the 

character experiences an impact by adding a decal to 

the character’s texture at the point of impact. 

The final level-3, shown in figure 7, is made up of a 

collection of volumes which are bound to the 

character skeleton just like level-1 volumes. However, 

each level-1 volume can consist of multiple level-3 

volumes. Unlike the level-1 volumes level-3 volumes 

do not contain triangles, and exist solely for the 

purpose of computing an estimate of the penetration 

depth between a character and some other object 

whenever a collision occurs, which is used for 

determining the collision response [8]. Ideally the 

level-3 volumes should approximate the collision 

mesh as closely as possible. 

During the search for an intersection between a 

character and some object, the bounding volumes 

provide a spatial subdivision that allows the fast 

elimination of whole groups of triangles at once if the 

bounding volumes enclosing these groups don’t 

overlap with the object. In order to provide an 

significant advantage over the brute force approach to 

finding intersections the bounding volumes need to 

satisfy a number of properties. The bounding volumes 

should encapsulate triangles as tightly as possible in 

order to minimize the number of “false positives” 

which leads to checking all triangles in the volume. 

The test to check whether two volumes overlap must 

be quick and the transformation of volumes as the 

character is animated must be computationally 

efficient. After some consideration we chose spheres 

and capsules as bounding volumes. The sphere has a 

quick overlap test and only the sphere centre needs to 

be transformed during animation. Unfortunately 

spheres usually do not provide a very tight fit. The 

capsule can be described by a line segment and a 

radius, and has a pretty quick overlap test (figure 8). 

Only the two endpoints of the line segments need to 

be transformed during animation. Capsules provide a 

better fit than spheres in many cases. Furthermore 

capsules and spheres allow for quick computation of 

penetration depth when two volumes or a volume and 

a triangle intersect (the depth value is necessary for 

providing proper collision response). 

Axis aligned bounding boxes (AABB) [10] and 

oriented bounding boxes (OBB) [11] were also taken 

into consideration. However, when the AABB needs 

to be transformed during animation there are two 

options. One is to compute a new AABB by finding 

the extents of the transformed geometry, but doing so 

is computationally expensive. Alternatively the 

previous AABB is transformed and a new one is 

computed based on the transformed vertices of the old 

AABB, but this may produce an AABB that is twice 

as large as the original. Oriented bounding boxes 

don’t suffer from this “growing” problem, but they 

take up more memory and are more expensive to 

transform [12]. 

Figure 7: Level-3 volumes (front & right view). 

Listing 3: Finding an intersection between characters.

Figure 8: Overlap of spheres and capsules.
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IntersectCharacterOpcodeShape( character, opcShape ) 

{

transform all level-1 and level-3 volumes in character 

  to world space 

    for each level-1 volume volA-1 from character

        obtain a list of triangles from opcShape that 

              overlap with volA-1

        transform touched triangles to world space (if any) 

        for each level-3 volume volA-3 in volA-1

            for each triangle tri of the transformed triangles  

                check for intersection between volA-3 and tri

                if intersection exists store the contact point, 

     contact normal and depth 

        if contact points were found then 

                combine all contacts into a single contact 

}

3.2 The Character Intersection 

Once the collide shape for a character has been 

defined the method in Listing 3 is used to find 

intersections with another character (intersection tests 

are done in world space). 

The method for finding the intersections between a 

character and a non-deformable object is slightly 

different and shown in listing 4. Recall that non-

deformable objects are handled by OPCODE, which 

builds an AABB tree from the mesh that is then used 

to quickly obtain a list of potentially colliding 

triangles. 

During the construction of the collide shape for the 

soccer player character we found that many level-1 

volumes contained only one level-3 volume, such was 

the case for legs and arms. The methods above can be 

improved by checking for this case and avoiding the 

level-1 overlap test altogether. Furthermore for 

character intersection it might be beneficial to buffer 

the transformed triangles. This means that if a 

character is involved in collisions with multiple 

objects the relevant parts of the collision mesh only 

need to be skinned once after the skeleton is 

repositioned for each frame. 

4 Results and Conclusion 

We have introduced a new collision detection 

algorithm for skeletally animated polygonal models. 

The technique described in this paper has been 

implemented as part of a soccer simulation. Initial 

results are encouraging and show that the collision 

detection techniques discussed are effective in 

practice and can be integrated with a physics engine 

to provide physically realistic responses to collisions. 

Many more improvements are possible and we are 

particularly interested in exploiting temporal 

coherence. It might also be worth considering other 

collision detection algorithms which compute the 

penetration depth between complex objects and using 

one of them instead of the approximation provided by 

level-3 volumes as described in this paper. An 

example is a novel variant of GJK presented in [13].  

Work on the integration of the ODE physics engine 

with Nebula’s skeletal animation system for the 

purpose of physically-based simulations is currently 

still in progress. A demo and source can be obtained 

from www.steelronin.com.
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