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Abstract
Camera calibration is a necessary and critical step in 3D object analysis. The accuracy of calibration results will
affect the object’s position in world coordinates, especially for 3D object tracking. In this paper, we present a new
camera calibration approach, and discuss its accuracy. We use 3D marks instead of 2D marks for calibration. Our
experimental results show that our approach has the potential to improve the calibration accuracy.
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1 Introduction

In the context of three-dimensional machine vision,
camera calibration is a process for determining the
internal geometric and optical camera characteristics
(intrinsic parameters), and the 3D position and
orientation data of the camera frame relative
to a defined world coordinate system (extrinsic
parameters). A calibration technique is based on
known 3D coordinates of geometrically configured
points. Here the 3D coordinates are usually referenced
to the world coordinate system. The configured points
are commonly referred to as calibration points which
are physically realized by calibration marks on a
calibration object.

Common calibration methods are DLT (Direct Linear
Transform) and Tsai’s method [1, 2]. The latter one
also models lens distortion coefficients and the map-
ping of sensor elements to an image buffer matrix; it
requires at least seven accurately detected calibration
points in an arbitrary but known geometric configura-
tion. Using Tsai’s calibration method, we can transfer
3D world coordinates into image coordinates. But even
using the same calibration method, differences in im-
age acquisition environments may affect the accuracy,
such as distances between camera and object, the size
and number of calibration marks, or the size of calibra-
tion objects. We evaluated Tsai’s method with respect
to such variations, where 3D marks are used instead of
the common 2D calibration marks. Section 2 reports
about improvements in calibration accuracy; Section 3
specifies this new alteration of Tsai’s method; Section
4 presents further experimental results, and Section 5
contains our conclusions.

2 Accuracy Improvement

Calibration accuracy will affect calculations of object’s
position and tracking parameters. We summarize four
methods for evaluating camera calibration accuracy:

1. Image Coordinates Error Statistics: This
measurement method analyzes the distorted error
statistics on the image plane. Steps are: convert
world coordinates into camera coordinates, then
into undistorted sensor plane coordinates, then
into distorted sensor plane coordinates, then into
image coordinates. After all these conversions,
determine errors between ideal image coordinates
and actual locations of data points.

2. Undistorted Image Plane Error Statistics: This
measurement method analyzes the undistorted
error statistics on the image plane. Steps
are: convert world coordinates into camera
coordinates, then into undistorted sensor plane
coordinates; convert from 2D image coordinates
into distorted sensor plane coordinates, then
into undistorted sensor plane coordinates. After
converting, determine the error between ideal and
actual location of the data point.

3. Camera Coordinates Error Statistics: This mea-
surement method analyzes the error statistics in
object space. Steps are: convert world coordi-
nates into camera coordinates; convert from 2D
image coordinates into distorted sensor plane co-
ordinates, then into undistorted sensor plane co-
ordinates, then into 3D camera coordinates. Af-
ter converting, the error is defined by distances
of closest points to ideal projection rays in 3D
camera coordinates space.
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Method 3 is also known as Normalized Calibration Er-
ror [5]. We explored four different schemes for improv-
ing calibration accuracy. Methods 3 and 4 (in the order
below) proved to be efficient and of practical use.

2.1 Subset Search

It is common to use all the calibration marks to produce
the calibration data file. In practice, some of the image
coordinates of projected calibration marks deviate from
their true values. Using different numbers of marks
will lead to different calibration accuracies. If the “bad
marks” (which deviate from their true values more than
others do) are removed, then the calibration accuracy
will be improved.

The idea of a subset search method can be described as
follows: suppose that there are n calibration marks in
the calibration date file. As well known in computer
vision, n should be greater than or equal to 7. Let
7 ≤ k ≤ n, where k is an integer. Let S be a set of n
marks. Then we can search all subsets of S to determine
such a subset which minimizes the calibration error.
We estimate how many subsets need to be considered.
For a set of size n, there are

m = nk =
n!

k!(n− k)!

subsets of size k, where 0 ≤ k ≤ n. Then we have

lgm =
1

ln10

(
n

∑
i=1

ln i−
k

∑
i=1

ln i−
n−k

∑
i=1

ln i

)
.

For example, let n=27, 7 ≤ k ≤ 27. Then the values of
lg(.) are between 0 and 7.4. The average of these values
is 5.58. Therefore there are quite a lot of subsets to be
considered. On the other hand, if we can already calcu-
late from the image that some marks are distorted, then
it is better to delete these first. The advantage of this
method is to improve calibration accuracy by searching
and removing bad marks, but its disadvantage are the
computational costs.

2.2 2D Neighbour Search

We can also consider neighbors of projected marks in
the image plane as possible replacements, in order to
improve the calibration accuracy.

In mathematical terms, assume that there are k (e.g.
k = 27) marks. Let r be a positive real number,

W (x0i ,y0i) = {(x,y) ∈ Z : |x− x0i | ≤ r, |y− y0i | ≤ r}.

Si = {(Xi,Yi,Zi,xi,yi) : (xi,yi) ∈W (x0i ,y0i)},

where Z is the set of integers. Xi, Yi, Zi are the world co-
ordinates of the (i + 1)th mark, (x0i ,y0i) are the image
coordinates of it, and i = 0,1,...,k−1.

Like the subset search method, using Si, i = 0, ...,k−1,
we can create a number of calibration data files and
compute their calibration errors. Then, we compare
these calibration errors and choose one calibration data
file such that the corresponding calibration error is min-
imal.

In defining W (x0i ,y0i), we could also consider non-
integer coordinates so as to obtain more accurate result.
The disadvantage of this method is again its computa-
tional complexity. If we consider all 4-adjacent grid
points as possible alternatives, then we have a search
space of size 5k, which already indicates inefficiency
of this approach.

2.3 Least-Squares Error

Assume that there are k = n x m marks, which means
there are n rows and m columns, where n,m ≥ 3.
For every row, there are m corresponding image
coordinates, denoted by Pi(xi,yi), where i = 1, ...,m.
From this, we can obtain a least-squares error line,
denoted by RLi, where i = 1, ...,m. Similarly, for
every column we can obtain a least-squares error line,
denoted by CL j, where j = 1, ...,n. Then we can
compute the intersection point of the line RLi with the
the line CL j, where i = 1, ...,m, j = 1, ...,n. Replace
the original image coordinates by the corresponding
intersection points. Our experiments show that this
method is very effective.

2.4 Sufficient Image Coordinates

In practice two calibration points can produce n + 1
image coordinates by dividing the line between these
two points using n points. Let Pi(Xi,Yi,Zi) be the world
coordinates of these two marks, where i=1,2. The cor-
responding image coordinates of them are denoted by
P′

i (x
′
i,y

′
i), where i=1,2. Then for every positive integer

n, we can compute n + 1 calibration points and their
corresponding image coordinates as follows:

Xi = X1 +
X2 −X1

n
i,

Yi = Y1 + Y2−Y1
n i,

Zi = Z1 + Z2−Z1
n i,

x′i = x′1 +
x′2 − x′1

n
i, and y′i = y′1 +

y′2 − y′1
n

i,

where i = 0,...,n. Our experiments show that this
method is effective. See Table 1.
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3 A New Calibration Method

Camera calibration can be subdivided into four steps
(capture images, pre-process images, prepare data file,
and produce parameters), and we describe the new
method along this line.

Figure 1: Distortion of a circle’s center of gravity under
perspective distortion. The center of gravity is shifted
downwards as shown in the frontal view of the image
plane [7].

We use the right hand system in defining the world
coordinates. 3D balls are chosen as calibration marks
instead of 2D marks, because 2D marks cause perspec-
tive distortion (see Fig. 1). Although it is efficient, but
moments of a circle are distorted when projected onto
the image plane. 3D marks can avoid this problem: a
sphere produces a disk in any viewing direction (see
Fig. 2). Assume that Tsai’s calibration method is used.
The main procedures are detailed as follows:

Step 1. Capture images of the calibration object com-
posed of k spheres in measured positions. For exam-
ple, we used two planes as the calibration object. We
arranged 16 black 3D marks on each plane such that
the distance between any two neighboring marks is 114
mm and the distance between the two planes is 11 mm.

Step 2. Pre-process the images from step 1 by combin-
ing two processes:

1. cut off the background, and

2. reduce the noises and shadows.

We achieved this by applying a suitable threshold to
each pixel to reduce the noise. Finally we can get noise-
less images as shown in Figures 2.

Step 3. Produce a data file which contains the world
coordinates of every calibration mark and their corre-
sponding image coordinates. This can be done by com-
bining the following two processes:

1. For every calibration mark, find out its center (im-
age coordinates).

2. Next, number the 16 marks, so as to match
world coordinates to image coordinates. We
slightly modified 16 marks and then applied it
respectively to the four pre-processed images
from the previous step.

Step 4. Run the software [8] to produce the camera pa-
rameters file which is needed, e.g., for object tracking
or 3D analysis.

Figure 2: The top row shows the upper plane captured
by left and right camera respectively. The bottom row
shows the lower plane captured by left and right camera
respectively.

4 Experimental Results

Figure 3: Calibration object with planar markers ar-
ranged in three planes.

Our experiments followed the four schemes as
described in Sec. 2 for camera calibration using
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n+1 number of normalized
calibration marks calibration error

8 32 0.426177
16 64 0.411801
32 128 0.405867
64 256 0.402175

Table 1: Relationship between numbers of calibration
marks and normalized calibration errors.

evaluation mean stddev maxErr sse
method
distorted 1.37 0.58 2.30 [pix] 66.880
error
undistorted 1.38 0.58 2.31 [pix] 67.263
error
object
space error 2.15 0.89 3.52 [mm] 163.10

Table 2: Evaluation of the camera calibration parame-
ters for the left camera.

evaluation mean stddev maxErr sse
method
distorted 1.64 0.90 3.91 [pix] 111.72
error
undistorted 1.65 0.92 3.97 [pix] 113.87
error
object
space error 2.48 1.33 5.71 [mm] 252.53

Table 3: Evaluation of the camera calibration parame-
ters for the right camera.

3D marks. First we applied the software [8] to the
calibration object with planar markers shown in Fig.
3, and the normalized calibration error we obtained is
0.652262. The following experiments showed that the
method described in Sec. 2.4 is effective for reducing
the normalized calibration error. We choose 8 marks
from the XOY plane and denoted them as Pi, where i
= 0,1,...,7 (see Fig. 3). We obtained 4 line segments
P0P1, P2P3, P4P5 and P6P7. For every positive integer
n, we can compute n+1 calibration points and their
corresponding image coordinates from every line
segment.

Table 1 shows the relationship between the number of
calibration marks and normalized calibration error.

Table 3 and 4 illustrate evaluations of the camera cali-
bration parameters for left and right cameras.

Now we replaced the calibration object by an object
having 3D (spherical) marks. From our experimental
results, we found that using 3D marks can improve the
calibration accuracy, but it depends on the calibration
environment. Although 3D marks will not cause per-
spective distortion, it may cast shadows under nonuni-
form lighting situations. This shifts the centers of cali-
bration marks and affects the final calibration accuracy.

We used three lights over calibration marks to reduce
shadows, the calibration errors for using 3D marks
and 2D marks are 4.2mm and 3.3mm, respectively.
Here using 2D marks was better than using 3D marks,
because lighting was not uniform, 3D marks were
affected by shadows. Then we improved the situation
by putting 3D marks under uniform lighting. The
calibration error for using 3D marks and 2D marks
were 2.7mm and 3.2mm, respectively. The best results
we got for using 3D and 2D marks were 2.1mm and
2.9mm, respectively.

We also improved the above results by using the
method described in Sec. 2.3, which is the least-
squares error method. Accuracies we obtained are:
the image coordinates error is less than 0.51 pixel;
undistorted image plane error is less than 0.52 pixel;
normalized calibration error is less than 0.34.

5 Conclusions

Traditional calibration marks are 2D marks. They
cause perspective distortion which often affects
calibration accuracy. We introduced 3D marks which
can completely overcome the perspective distortion
problem. But using 3D marks is restricted by
environments. It requires uniform lighting, so as to
have less shadows. It also requires accurate installation
of 3D marks at the right position, because normally
2D marks are arranged by a plotter, and 3D marks are
arranged by hands.

From our experimental results it became clear that 3D
marks improved the calibration error if we work un-
der expected lighting. Another important advantage of
using 3D marks is that it is very useful in tracking of
moving objects.

We also discussed four schemes to improve calibration
accuracy. Among these schemes, the method of gener-
ating sufficient image coordinates and using the least-
squares error method have been proved to be efficient.
Our experimental results show that by using the least-
squares error method, the calibration accuracy can be
largely improved.
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