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Abstract 

Traditionally, human activity recognition has been achieved mainly by the statistical pattern recognition techniques 
such as the Nearest Neighbor Rule (NNR), and the state-space methods, e.g. the Hidden Markov Model (HMM). 
This paper proposes three novel approaches – the use of the Elman Network (EN) and two hybrids of Neural 
Network (NN) and HMM, i.e. HMM-NN and NN-HMM, to recognize ten simple activities in an office 
environment. The sex, race and physique invariant feature vectors are extracted from tracking the subjects’ head 
movement over consecutive frames. Based on our database of 200 activity sequences, experimental results show 
that all the three proposed systems perform better than the two popular conventional methods. The HMM-NN 
system attained the best performance of 96.5%. The encouraging results not only reveal the performance 
improvement of combining NN and the traditional HMM, but also demonstrate our proposals’ greater potential in 
realizing recognition of continuous complex activities. 

Keywords: Connectionist human activity recognition, human head tracking, Elman partial Recurrent Neural 
Network, Neural Network and Hidden Markov Model hybrids, digital color image sequences analysis, spatial 
temporal pattern recognition. 

1 Introduction 

Human activity recognition (HAR) research has been 
on the rise because of the rapid technological 
development of the image-capturing software and 
hardware, in addition to the omnipresence of 
reasonably low-cost high-performance personal 
computers. These new technological advances have 
made vision-based research much more affordable 
and efficient than ever before.  The main motivation, 
however, comes from its application in a myriad 
different challenging but rewarding human-motion-
based problems that include automated surveillance 
systems, human-machine interaction, content-based 
retrieval, military simulation, clinical gait analysis 
and sports, etc [1,2]. In all these applications, the 
ability of the computer vision systems to understand 
and classify the human activity accurately is very 
important. 

As we have observed, the connectionist techniques, 
and their hybrids in the form of HMM-NN or NN-
HMM, have neither been exploited nor been reported 
in the literature of HAR. It is thus the objective of 
this paper to approach the long-standing problem 
with three solutions based on the artificial neural 
network, and compare their performance with that of 
the traditional HAR classifiers – NNR and HMM. In 

the first proposal, the classifier system based on the 
Elman model of the partial Recurrent Neural 
Network (RNN), or simply Elman Network (EN), is 
advocated. Chosen for its internal representation of 
time, its ability to remember input from the previous 
frame and develop an ‘understanding’ of the context 
of the input makes it a suitable candidate for the 
time-varying recognition problem at hand. The 
second system consists of ten HMMs (each one is 
trained specifically for a class of activity) and a 
single-hidden-layer Multi-Layer Perceptron (MLP) 
NN. The MLP, known for its better classification 
capability than the HMMs, is used to classify the 
activity based on the likelihood functions for the ten 
classes computed by the HMMs. This combination is 
known as the HMM-NN hybrid. In our final 
proposal, a NN-HMM hybrid, two MLPs are trained 
as labelers for ten HMMs, which are time-scale 
invariant classifiers at sequence level. The MLP, 
being both trainable and discriminative, is better than 
the ordinary vector quantizer used in the traditional 
HMM; hence, this proposed hybrid is also expected 
to perform better than the traditional HMM classifier.

In all three approaches, we seek to recognize ten 
distinct classes of activity in an office environment. 
These activities are walking, squatting, standing up, 
sitting and getting up, in both lateral and frontal 
views. For experimental purposes, we built a 
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database of 200 activity sequences, comprising ten 
activities performed by 20 subjects.  

2  System Overview 

Our proposed systems are all made up of a few 
common modules depicted in Figure 1.  
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Figure 1: System overview of our proposed human 
activity recognition approaches 

Except for the training and testing of the different 
recognition algorithms, these systems use the same 
database, have the same preprocessing, feature 
extraction and feature conditioning modules. Briefly, 
these modules work together in the following 
manner. Human activities captured were stored as 
image sequences. For each frame of every sequence, 
motion segmentation followed by essential image 
processing was performed to obtain the human blob. 
We assumed that our head is always above our torso 
in the images while performing any of the activities. 
Then, from the human blob, the head was located 
automatically and marked with a bounding box. The 
centroid of the box was used to approximate that of 
the human head in the frame, and extracted as the 
feature of interest. By repeating this extraction for all 
frames in every activity sequence, for every subject, 
we formed our database. A large portion of the 
feature vectors was used for the training of each of 
the classifiers and the remaining ‘unseen’ samples 
were subsequently used to test the systems. To 
improve the efficiency of the limited samples, four-
fold cross validation was employed. In the following 
sections, these processes and their related concepts 
are explained in greater details. 

Many techniques are available for human detection 
and tracking of moving human. Using either 
temporal or spatial information of the images, they 
can be classified roughly into one of the four main 
approaches. They are statistical motion segmentation 
method [10], optical flow estimation method [11], 
motion segmentation method [12], and the 
background subtraction method [13]. Of these 
methods, the background subtraction was found to be 
most computationally efficient and robust enough for 
our use in the indoor office environment; it was 
adopted as the means for human motion 
segmentation in our implementation. 

The background, as shown in Figure 2(a), was 
modeled by computing the mean for each pixel in the 
colour images over a sequence of 50 frames, which 
were taken prior to any execution of activity by the 
actors, e.g. Figure 2(b). Next, the background-
subtracted image, Figure 2(c), was subjected to 
image thresholding, median filtering and some 
standard morphological operations to segment out 
the required human blob, as shown in Figure 2(d). 
The head was then located and marked for 
subsequent feature extraction (explained in next sub-
section), as shown in Figure 2(e). Unlike [8], all 
these had been accomplished automatically, without 
the need for human intervention. 

(a) background model    (b) a frame from a          (c) background       (d) morphologically    (e) head located for
    sequence      subtracted         operated         feature extraction

Figure 2: Human object segmentation and head 
location for subsequent feature extraction. 

For the experiments, we built a database of 200 
human activity sequences – ten different activities 
performed by 20 subjects, ten from each gender. 
Subjects are of various height, built and race. Refer 
to Figure 3 for some snapshots of the recorded 
sequences for three of the ten activities.    

Figure 3: Snapshots of three activity sequences 
performed by our subjects of different gender, race 

and physique

3 Proposed HAR Algorithms 

In this section, the motivations behind the three 
proposed approaches are explained and details of 
their implementation are described. 

Hidden Layer

Context Layer

Output
Layer

Input
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+

Figure 4: Structure of the Elman Network (EN).  
(Dotted line represents non-trainable feedback 

connections.) 

3.1 Elman Network (EN)

3.1.1  Motivation of using EN 

Our first proposed activity classifier is based on the 
Elman [18] architecture of the partial RNN, also 
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known as Simple Recurrent Network (SRN) or 
Elman Network (EN), as shown in Figure 4. The EN 
is typically employed in situations when we have 
some data to give to the network for classification, 
modeling, etc., but the sequence of this input data is 
important. We want the network to somehow 
remember the previous inputs and take them into 
consideration together with the current input data 
when generating an answer. This memory is 
achieved by the hidden units feeding its previous 
outputs back into the context units, which consist of 
unit delays that store the hidden units’ outputs for 
one time step. All these enable the network to 
perform learning tasks that extend over time. In fact, 
it is due to the very nature of the feedback around the 
hidden units, these hidden neurons continue to 
recycle information through the network over 
multiple time steps, and thereby discover the abstract 
internal representation of time.  
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Figure 5: Block diagram of EN-based HAR system. 

3.1.2 Applying EN to HAR  

The flow chart of our first proposal is shown in 
Figure 5. As with the traditional classifier systems, 
the extracted feature matrix was split into four 
subsets for the training and testing of the EN. The 
three numbers in the brackets represent the adopted 
topology of 54-units input layer, 160 hidden-context-
units layer and a 10-units output layer – each output 
unit to represent a class of activity. The number of 
hidden-context-units was varied from 50 to 500 in 
the experiment; the value 160 was selected based on 
the best experimental results obtained. Hyperbolic 
tangent sigmoid transfer function was used for the 
hidden layer neurons, and the logistic sigmoid 
scaling function for the output neurons.  

The feedback connection from the output of hidden 
layer to its input was fixed at 1.0 and the activations 
of the hidden layer were copied to the context layer 
on a one-to-one basis. This feedback connection is 
the dotted line in Figure 4; the solid lines represent 
trainable connections. The training algorithm fuses 
the current input with the previous activation of the 
hidden layer (via the context units) and activates the 
hidden units with this combined input. The output 
produced is then compared with a predefined set of 
desired output. The error generated is used to adjust 
the strengths of all the trainable connections, so as to 
move the network outputs closer to the predefined 
targets; the strength of the feedback connection is left 
intact. In the training stage, the initial learning rate 
was set to 0.01, momentum factor to 0.9, all the 

arbitrary constants to 0.4 and the network is trained 
by using training data from the three training subsets.  

3.2 HMM-NN Hybrid 

3.2.1 Motivation of using HMM-NN 

In the traditional HMM classifier, each model is 
trained to maximize the likelihood of producing its 
training examples but nothing is done to minimize 
the probability that examples from other classes are 
produced by the model. This has a negative impact 
on the recognition capability.  

In order to improve the accuracy and retain the 
endearing time-scale invariant characteristic of the 
HMM at the same time, our second proposal 
introduced the incorporation of an MLP at the HMM 
output.  

As the MLP trained as a classifier using the EBP can 
approximate the Bayes optimal discriminant function 
and by taking advantage of the discriminative 
training of the MLP, the weakness in the 
discrimination ability of maximum likelihood 
training of the HMM could be overcome. Thus, the 
recognition performance would be enhanced.  
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Figure 6: Block diagram of the NN-HMM hybrid 
system for

3.2.2  Applying HMM-NN hybrid to HAR

For the HMM stage of the hybrid, a three-state 
ergodic topology identical to traditional HMM 
classifier systems was used, for ease of comparison. 
The same training and recognition algorithms were 
also employed as described in the HMM HAR 
system. But, instead of assessing the system 
performance right at the end of HMM stage, its 
outputs obtained from the Forward algorithm were 
passed to the input layer of the MLP, and recognition 
performance was evaluated only at the end of the 
hybrid system.  

For each test sample, the HMM stage output ten log-
likelihood functions P(O|λk), where k=1, 2, …, 10. 
They were then passed to the single-hidden-layered 
MLP, which has ten input neurons, 50 hidden 
neurons (this configuration was obtained 
heuristically, based on the best performance 
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obtained) and ten output neurons, one to represent 
each class. The number of hidden units was actually 
varied from ten to 100, by steps of five, in the 
experiments to obtain the ‘optimal’ network 
configuration.  

3.3 NN-HMM Hybrid 

3.3.1 Motivation of using NN-HMM 

In our final proposal, we incorporated two MLPs as 
labelers for the traditional HMM classifier, resulting 
in the NN-HMM hybrid. The advantage of such a 
hybrid system over the traditional HMM classifier is 
that the MLP, being both trainable and 
discriminative, outperforms the ordinary vector 
quantizer and improves the overall recognition 
capability. The benefit, looking from the MLP point 
of view, is that HMM will add some dynamic 
features to the MLP, giving it the capability of 
handling dynamic HAR problems with the same 
efficiency and finesse it normally handles static 
pattern recognition problem.  

3.3.2  Applying NN-HMM hybrid to HAR  

Two identical MLPs were implemented as labelers 
for the HMM stage, namely Labeler-Y and Labeler-
X (Figure 6). The ten output indices of Labeler-Y 
were assigned labels ‘1’, ‘2’, …, ‘10’ to represent 
class ‘1’ to class ‘10’ of our human activity, 
respectively. Likewise, the output indices of Labeler-
X were named ‘11’, ‘12’, …, ‘20’ representing class 
‘1’ to class ‘10’, respectively. Each MLP labeler was 
trained with the modified EBP algorithm to classify 
vectors for one feature, i.e. either the differences in 
the x- or the y-coordinates between adjacent frames. 
The number of hidden units employed in each of the 
MLP labelers was varied from ten to 100, in steps of 
five, in the experiments. 

To incorporate the MLP output information in the 
ensuing HMM stage, the straightforward yet 
effective winner-take-all labeling strategy was 
applied to the MLP labelers. It took into account the 
highest scoring output by passing only the label of 
the top scoring output to the HMM. The HMM then 
used the resulting label streams as the observation 
sequences, just as observation symbols from 
codebooks. Same as the traditional HMM system, the 
label streams from the MLP were concatenated to 
facilitate splitting of the data into four subsets for the 
training and evaluation of the three-state ergodic 
HMM classifier. As before, one HMM, λk  (where
k=1, 2, …, 10), was trained specifically for each class 
of activity and training was via the Baum-Welch 
method of parameter re-estimation that maximized 
the likelihood function.  

4 Results and discussions  

On the single assumption that the human head is 
always above the torso, feature vectors were 
extracted as described, and a database of 200 activity 
sequences was built for experimental purposes. For 
each of the five classifiers, i.e. the two traditional 
ones and our three proposals, the configuration that 
gave the ‘optimum’ system recognition rate was 
sought for comparison. But by no means are the 
solutions truly optimal as our searches are not 
exactly exhaustive. The primary aim of the study is 
to compare qualitatively our proposals with the 
traditional means for HAR. So in our opinion, as 
long as indicative result can be obtained with 
reasonable amount of resources, and if it allows us to 
gauge the feasibility of the proposals, it should 
suffice.  

4.1 Recognition using the k-NNR 

The k-NNR classifier was evaluated with k taking on 
values one, three, five, seven and nine nearest 
neighbors in the experiments. Applying four-fold 
covaraince values, each test activity sample was 
assigned to the majority class of its k nearest 
neighbors in the feature space. The estimate of 
accuracy was obtained from the overall number of 
correct classifications from all four runs, divided by 
200, the total number of samples in the database. 
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Figure 7: k-NNR recognition rate as a function of the 
number of nearest neighbors used, k.

The recognition rate is plotted against the five values 
of k used, as shown in Figure 7. Due to the small data 
size, the classifier was observed to include more 
outliers when higher values of k were used. The best 
performance is obtained when k is set to five, which 
has a recognition rate of 85.5%. Thus, the 5-NNR is 
selected to represent the k-NNR method for our HAR 
classifiers comparison.    

4.2 Recognition using the HMM

Since there is no simple theoretically correct way of 
choosing the number of states, S; it was varied from 
three to ten in the experiment. We fixed the number 
of symbols M at 111 based on the simplified 
‘quantization’ process and used the Forward 
algorithms to compute the various likelihood 
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functions. The best classification result of 87% is 
obtained when S=3, as shown in Figure 8, the plot of 
HMM recognition rate versus number of states, S.
This reveals that in the HMM classifier, the higher 
number of states does not necessarily imply better 
performance. On the contrary, a mere three-state 
model is sufficient to classify our selected human 
activities, using two one-dimensional sequential 
features derived from tracking the estimated head 
centroid (x- and y-coordinates). Hence, the three-
state ergodic topology is chosen for the conventional 
HMM, HMM-NN hybrid and the NN-HMM hybrid 
classifiers, for easy comparison. 
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Figure 8: HMM recognition rate as a function of the 
number of states, S.

4.3 Recognition using the EN 

In order to find the optimal EN network 
configuration, different number of hidden units was 
evaluated. Generally, for an EN to have the best 
chance at learning a problem, it needs more hidden 
neurons in its hidden layer than are required for a 
solution by other method, e.g. the MLP. So, in steps 
of 50, the number of hidden units was varied from 50 
to 500 in the initial attempt to find the ‘optimal’
network. Figure 8 depicts the plot of recognition rate 
as a function of the number of hidden units. 
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Figure 9: Initial search: EN recognition rate as a 
function of the number of hidden units. 

It was noticed that the EN classifier recognition rate 
was higher when the network had 150, 200 and 500 
hidden units.  Despite poorer training performance 
observed, which sometimes may be good for better 
generalization of unseen data, the high recognition 
rate and relatively smaller architecture made the 

configurations of between 150 to 200 hidden units 
more attractive than the architecture of 500 hidden 
units. Hence, it was decided to investigate further 
and narrow the search for ‘optimal’ EN configuration 
to between 150 and 200 hidden units.  

4.4  Recognition using the HMM-NN 

In this hybrid, in order to obtain the ‘optimal’
network configuration, the number of hidden units 
was varied from ten to 100, in steps of five. The 
recognition rate as a function of the number of MLP 
hidden units is plotted as shown in Figure 10. The 
highest performance is achieved when 50 hidden 
neurons are used in the MLP stage, yielding a 
recognition rate of 96.5%. The configurations with 
more than 50 hidden units had probably overfitted 
the problem and the MLP actually remembered the 
training examples, resulted in poorer recognition 
rate. As such, the 50 hidden-units architecture will be 
used in the HMM-NN classifier for comparison.  
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Figure 10: HMM-NN recognition rate as a function of 
the number of MLP hidden units. 

4.5 Recognition using the NN-HMM 

Two identical MLPs were implemented as labelers 
for the HMM stage in this hybrid. Both used the 
modified EBP algorithm but each was trained to 
classify vectors for one feature, i.e. either the 
differences in the x- or the y-coordinates between 
adjacent frames. The number of hidden units 
employed in each of the MLP labelers was varied 
simultaneously from ten to 100, in steps of five. The 
hybrid system’s recognition rate and the labelers’
classification rate, both as functions of the number of 
the hidden units, are plotted in Figure 11. It was 
noticed that when each of the MLP labelers had 30 
hidden units, the best classification results of 96% 
was obtained at the output of the labelers. However, 
the best performance of the entire hybrid system does 
not peak there – it achieved the highest recognition 
rate of 95% when there are only 20 hidden units in 
each labeler. The 30-hidden-unit configuration had 
most likely memorized the training patterns and 
resulted in inferior overall performance.  

324 Image and Vision Computing NZ



10 20 30 40 50 60 70 80 90 100
80

82

84

86

88

90

92

94

96

98

Number of hidden units

R
ec
o
g
n
it
io
n
ra
te
(%
)

NN-HMM
MLP labelers
NN-HMM
MLP labelers

Figure 11: NN-HMM recognition rate and labelers’
classification rate as functions of the number of MLP 

hidden units.  

5 Conclusions 

This paper presented three novel approaches, based 
on the EN, the HMM-NN hybrid and the NN-HMM 
hybrid, for the recognition of ten human activities 
from a set of color image sequences. The 
performance of the three proposed systems was 
evaluated based on a database obtained from motion 
segmentation, feature extraction and feature vectors  

From our investigation, the best recognition rate of 
96.5% was achieved by the HMM-NN hybrid. 
Training of its HMMs was via the Baum-Welch 
method of parameter re-estimation and its MLP was 
trained with the modified EBP, whereby 
approximating the Bayes’ classifier. The HMM-NN 
hybrid’s performance is not very much higher than 
that of the traditional HMM classifier, but it is the 
most robust candidate for HAR among our three 
proposals. Nonetheless, the other two proposed 
systems performed quite well too, attaining 
recognition rates of 95% (NN-HMM) and 92.5% 
(EN), as compared to 85.5% and 87% obtained by 
the traditional k-NNR and HMM classifiers, 
respectively. 
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