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Abstract

We investigate the applications of optimal wavelets and neural networks in the recognition of handwritten numerals.
Wavelet transforms have been successfully applied in many applications including pattern recognition. However,
which kind of wavelet should be used is still an open problem. We propose to use a combination of optimal
wavelets and neural networks in pattern recognition applications. The optimal wavelet filters can be obtained
by minimizing the mean square error of the neural network output. The same error objective function is used
for training the weights of the neural network. We conducted some experiments on unconstrained handwritten
numeral recognition and observed 1.60% increase in the recognition rate compared to the Daubechies-4 wavelet

on the Concordia handwritten numeral database.

Keywords: Optimal wavelets, neural networks, handwriting recognition.

1 Introduction

Wavelet transforms have been proven to be very
successful in many applications such as image
compression, image denoising, signal processing,
pattern recognition, and computer graphics, to name
only a few. For a given application, which wavelet
should we choose to use? It is desirable to choose
a wavelet that is best suitable for the problem in
hand. We call this wavelet optimal wavelet. Optimal
wavelets have been used in several areas such as image
compression, signal representation, signal denoising,
feature extraction, face recognition, image pattern
recognition, etc. However, optimal wavelets have not
been applied to pattern recognition in combination
with neural networks. Here we briefly review some of
the optimal wavelet papers. Mallet et al. [1] proposed
a new and innovative technique based on adaptive
wavelets, which aims to reduce the dimensionality
and optimize the discriminatory information. Instead
of using standard wavelet bases, they generate the
wavelet which optimizes specified discriminant
criteria. Wang et al. [2] used Genetic Algorithm (GA)
to find an optimal basis derived from a combination of
frequencies and orientation angles in the 2-D Gabor
wavelet transform. This approach provides a more
accurate and efficient projection scheme and therefore
a better face classification result. Chapa et al. [3]
developed a technique for deriving a bandlimited
wavelet directly from the desired signal spectrum
in such a way that the mean square error between
their spectra is a minimum. The technique includes
an algorithm for finding the scaling function from
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an orthonormal wavelet, and algorithms for finding
the optimal wavelet magnitude and phase from a
given input signal. A revised version of this paper
appeared in IEEE Transactions on Sgnal Processing
[4]. Zhuang et al. [5] studied the problem of choosing
an image based optimal wavelet basis with compact
support for image data compression and provided a
general algorithm for computing the optimal wavelet
basis. Tewfik et al. [6] studied the problem of choosing
a discrete orthogonal wavelet with a support size
that is equal to or smaller than a prespecified limit
to represent a given finite support signal up to a
fixed resolution scale. The techniques are based on
optimizing certain cost functions. The optimization
with a set of constraints can be converted to an
optimization problem without constraints by means of
parametrization. Das et al. [7] proposed an algorithm
for construction of optimal compactly supported
N-tap orthonormal wavelet for signal denoising.
Simulated annealing is used for the optimization of
the parametrization of the wavelet FIR filter bank
coefficients. Golden [8] considered the problem of
optimizing at each resolution level the parameters of
a two-band quadrature mirror filter analysis bank to
achieve maximal decorrelation of the two decimated
output sequences.

In this paper, we propose to use optimal wavelets
together with neural networks in pattern recognition
applications. Since we have to solve an optimization
problem in order to find the optimal wavelets, it is
suggested to use the optimal wavelets in a pattern
recognition descriptor that employs both wavelet
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features and neural networks. We can obtain the
optimal wavelet filters by minimizing the mean square
error of the neural network output. The same objective
function can be used to train the neural network
weights. Experiments show a recognition rate increase
for unconstrained handwritten numeral recognition. In
order to extract better features, we use different filters
for different wavelet decomposition levels.

The paper is organized as follows. Section 2 reviews
the parametrization of compactly supported wavelets.
Section 3 explains how optimal wavelets are applied to
pattern recognition. Section 4 gives some experimental
results. Finally, section 5 concludes the paper.

2 Parametrization of Compactly Sup-
ported Wavelets

The construction of a wavelet depends on a scaling
function ¢(x) that obeys a 2-scale dilation equation:

0(0) =v2Y g o(2x—k)

where ¢, is a set of real filter. The sequence {c, } must
satisfy the following conditions [9], [10]:

2.6 =2
Y G Ciesom = S(m)
Z(el)kkmck =0,m=0,1,-- (M -1

where M > 1 and 6(m) denotes a discrete Kronecker
delta function. M controls the compact support of the
wavelet, and it is equal to the number of vanishing mo-
ments of the wavelet y(x) corresponding to ¢(x).

The wavelet y(x) is defined as

w0 =V2Y dd(2x—K)

where d, = (£1)%cy_;_y

It can be shown that discrete orthonormal wavelets of
support less than 2N — 1, where N is an even number,

can be parametrized by N — 1 real parameters each tak-
ing values in [0,27) [11]. Let

H(2) =Y ¢z
G2 =Y d

where z= e~1". Then we can have

(e )==(2)
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where E(Z) is a polyphase matrix defined by

E(2 =W_1(dW2(2-- M2V

V= ( cosb,

—sing,
sinf, cosf,

V(@ =1+ (@z-1)v,1 <k<N-1.

v — cosH,
k™ \ sing,

By looking at the definition of E(z) we know that a
sequence ¢, of length 2N is actually parametrized by N
free parameters. Furthermore, the wavelet y(x) has at
least one vanishing moment if and only if 6, = 37/4.
We can give some of the parametrized sequences for
N = 2. The sequences {c, }3_, can be listed as follows:

Cy =SiN(6;) xsin(6, — /4)
¢, =Sin(6;) xsin(6, + /4)
C, = cos(0,;) *sin(6; + m/4)
Cy = €0s(0;) *sin(m/4 — 6,)

where 6, € [0,2).

After the parametrization, the optimization problem to
find the optimal wavelet for a specific cost function
becomes an optimization problem without constraints.
This is much easier to solve in practice.

3 Applications to Pattern Recogni-
tion

Wavelets and neural networks are very popular and ef-
fective in pattern recognition. Here we list three de-
scriptors that use both wavelet features and neural net-
works:

1. Lee et al. [12] proposed a scheme for multires-
olution recognition of unconstrained handwritten
numerals using wavelet transform and a simple
multilayer cluster neural network. The wavelet
features of handwritten numeral at two decompo-
sition levels are fed into the multilayer cluster neu-
ral network.

2. Wunsch et al. [13] gave a descriptor by extracting
wavelet features from the outer contour of the
handwritten characters and feeding the features
into neural networks. Their experiments were
done on handprinted characters.
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3. Chen et al. [14] developed a descriptor by using
multiwavelets and neural networks. The multi-
wavelet features are extracted from the outer con-
tour of the handwritten numerals and fed into neu-
ral networks. This descriptor gives higher recog-
nition rate than the one given in [13] for handwrit-
ten numeral recognition.

In order to obtain an optimal wavelet for a pattern
recognition problem, we need to solve an optimization
problem. The objective function should be defined
by a cost function that need to be minimized. For
neural networks, we can use the distance between the
network output and the desired output as the objective
function in order to train the weights. For optimal
wavelets, we can use the same objective function to
find the optimal filters. The training of the neural
network weights and optimal wavelet filters can be
done interchangeably. That is, we modify the optimal
wavelet filter parameters once, then we modify the
weights of the neural networks once. We call this
as one cycle of training. We repeat the cycle in this
way for many times until a prespecified number of
cycles is reached or the error of the network is below
a threshold. When we update the neural network
weights, we treat the wavelet filters as fixed and use
back-propagation to modify the weights. When we
update the optimal wavelet filter parameters, we fix
the neural network weights and modify the optimal
wavelet filter parameters by using the Newton-Raphson
Method:

o+ = o) - EEOL

where E(0) is the objective function that is defined as
the mean square error of the neural network output, and
E'(6) is the derivative of E(0) with respect to the opti-
mal wavelet parameter 6. We accept the modifications
on 6 only when E decreases. If E increases because
of the modification, we restore the previous value of
0(n). Similarly, we only accept the modifications to the
weights of the neural network when E decreases. Oth-
erwise, we restore the weights and reduce the learning
rate of the neural network. For every wavelet decompo-
sition level, we have two optimal wavelet parameters,
one for the row and one for the column. It should be
mentioned that we do not use Simulated Annealing to
find the global minimum for the optimal wavelet filters
because there is no meaning to spend too much time
on learning the optimal wavelet filters when the neural
network weights are not fixed. Figure 1 shows the steps
of our optimal wavelet neural network descriptor.

The optimal wavelet filters to be found are different for
1D signals and 2D images. When we use the contour
of the numeral, we need to find only one set of optimal
wavelet filters for every wavelet decomposition level
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Figure 1: The flow chart of our optimal wavelet neural
network descriptor.

because we have 1D input signal. However, for images
we need to find two sets of optimal wavelet filters for
every wavelet decomposition level: one for the row
and one for the column. We carry out experiments on
optimal wavelets with filter length equal to four.

4 Experimental Results

In this paper, we only test the feasibility of optimal
wavelets in handwritten numeral recognition. In
fact, optimal wavelets can be used in any other pattern
recognition applications as long as wavelet features and
neural networks are used. We use a simple multilayer
feed-forward neural network in our experiments. The
original numeral image is first normalized to a 16 x 16
matrix. The centroid of the handwritten numeral is
moved to the center of the image. We also scale the
handwritten numeral so that the maximum distance
from the outer contour to the centroid is half the length
of the box containing the numeral image. We perform
wavelet transform on the image for two successive
levels. We obtain four 8 x 8 images after the first
level wavelet decomposition, and four 4 x 4 images
after the second level wavelet decomposition. These
two levels of wavelet features are fed into the neural
network. One hidden layer with 80 neurons is used in
the neural network. The output layer has ten neurons
for the ten digits. The network target is defined as
a vector with 10 real values. Only one value is 0.9
representing the numeral category by its location in
the vector. All other values in the vector are set to 0.1.
The optimal wavelet filters can be learned by using
Newton-Raphson method. The objective function is
defined as the mean square error of the neural network
output. This objective function is used for training
both the weights of the neural network and the optimal
wavelet filters. We consider different wavelet filters for
different wavelet decomposition levels for both rows
and columns. The initial value of the optimal wavelet
filter parameter O is set to w/12. This corresponds to
the Daubechies-4 wavelet. The neural network weights
are initialized as random values at the beginning.
The training epoches are set to 4800. The Concordia
University CENPARMI handwritten numeral database
is used for the training and testing. This database
contains 6000 unconstrained handwritten numerals
originally collected from dead letter envelopes by
the U.S. postal service at different locations. The
numerals in the database are stored in bi-level format.
We use 4000 numerals for training and 2000 for
testing. Some of the numerals are very difficult to
recognize even with human eyes. For comparison, we
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compare the recognition rates of the same algorithm
with standard wavelets and with optimal wavelets.
We get a recognition rate of 91.70% by using optimal
wavelets, whereas 90.10% for the same network with
Daubechies-4 wavelet. Note that we only used simple
wavelet features in our experiments and proved that
higher recognition rate can be obtained by employing
optimal wavelets. If we use more complicated invariant
wavelet features, then much higher recognition rate
is expected for our handwritten numeral recognition
task. We list the optimal wavelet filters we obtained by
using the CENPARMI handwritten numeral database
as follows:

f, =(£0.1159, 0.1814, 0.8230, 0.5257)
g, = (£0.1163, 0.1825, 0.8234, 0.5246)
f, = (£0.1424, 0.2897, 0.8495, 0.4174)
g, = (£0.0722, 0.0914, 0.7793, 0.6157)

Note that f, and f, are the optimal wavelet filters for
row wavelet decomposition level 1 and 2, respectively.
gl and g2 are the optimal wavelet filters for column
wavelet decomposition level 1 and 2, respectively. Fig-
ure 2 and Figure 3 illustrate the shapes of these scal-
ing functions and mother wavelets. Optimal wavelets
depend on the training dataset and the neural network
used, so different optimal wavelet filters should be ob-
tained for different datasets and descriptors.

Scaling function (row) Mother wavelet (row)

0.2 0.2

AT

0.2 0.55 0.9 0.2 0.55 0.9

Scaling function (column) Mother wavelet (column)

0.2 0.2

AT

-0.2 -0.2

0.2 0.55 0.9 0.2 0.55 0.9

Figure 2: The scaling functions and mother wavelets
for the first level wavelet decomposition for row and
column, respectively.

5 Conclusion

In this paper, we propose to use optimal wavelets in the
wavelet neural network for pattern recognition. Experi-
mental results show that by adaptively finding the opti-
mal wavelets we get higher recognition rate for uncon-
strained handwritten numeral recognition. Note that in
addition to handwritten numeral recognition, we can
also use optimal wavelets in other pattern recognition
applications as long as wavelet features and neural net-
works are used.
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Scaling function (row) Mother wavelet (row)

0.2 0.2

[ ]
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Scaling function (column) Mother wavelet (column)

0.2 0.2
0 i 0

-0.2 -0.2

0.2 0.55 0.9 0.2 0.55 0.9

Figure 3: The scaling functions and mother wavelets
for the second level wavelet decomposition for row and
column, respectively.
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