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Abstract
One of the next great challenges of cell biology is the determination of the enormous number of protein structures
encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle
analysis have developed to the point where they now provide a methodology for high resolution structure
determination. Using this approach, images of randomly oriented single particles are aligned computationally
to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-
resolution reconstructions is obtaining a large enough representative dataset ( � 100 � 000 particles). Traditionally
particles have been manually picked which is an extremely labour intensive process. The problem is made
especially difficult by the low signal-to-noise ratio of the images.
This paper describes the development of automatic particle picking software, which has been tested with both
negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most
of the particles, with few false positives. Further work will involve extending the software to detect differently
shaped and oriented particles.
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1 Introduction

With the completion of a large number of genome se-
quences, one of the next great challenges of cell biol-
ogy is the determination of the protein structures that
they encode. The human genome project alone iden-
tified � 35,000 genes encoding both soluble and mem-
brane proteins (25–40% of total) [1]. In vivo these or-
ganise into macromolecular assemblies further increas-
ing the level of structural complexity.

Traditionally protein structures have been solved from
the diffraction pattern of 3-D crystals. However,
particularly in the case of membrane proteins and
macromolecular assemblies, the production of well-
ordered crystals is a major bottleneck in structure
determination. In recent years, advances in electron
cryo-microscopy and high-resolution single particle
analysis have developed to the point where they now
provide an alternative methodology for high resolution
structure determination [2]. Using this approach,
images of randomly oriented single particles are
aligned computationally (rather than biochemically
during the production of 3-D crystals) to reconstruct
3-D structures of proteins and even whole viruses
[3]. Modern cryo-electron microscopes are capable of
recording structural information to a resolution higher

than 2Å2 (1Å=10 � 10m) [2]. One of the limiting factors
in obtaining 3-D reconstructions to this resolution
level is the difficulty of generating a large enough
data set ( � 100 � 000 particles) which fully samples the
3-D volume at the required resolution and overcomes
problems related to the low signal-to-noise (SNR)
of cryo-images. Traditionally, particles have been
picked manually but this approach is extremely
labour intensive ( � 1 week for 20,000 particles),
and has proved to be a major bottleneck in the 3-D
reconstruction process.

This paper describes the development of automatic
particle picking software. It was first developed using
negatively stained images of the protein ferritin, and
has also been tested using cryo-electron micrographs
of virus particles.

Cryo electron micrographs are obtained by suspending
the purified protein molecules in a thin layer of vitreous
ice, which is then imaged in the electron microscope
through exposure with a low electron dose. Low dose
imaging ( 10 electrons/Å2) results in very low contrast
electron micrographs,but is necessary in order to min-
imise beam damage.

Negatively stained images are obtained by dispensing
the protein sample onto a thin carbon layer supported
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on an electron microscope grid. The bound protein
is then washed with buffer prior to the application
of a heavy metal stain such as Uranyl acetate. On
blotting away the excess stain the remaining solution
dries down to form an electron dense meniscus around
the protein molecule. The molecular imprint is then
imaged at room temperature under conditions that
enhance the SNR compared to those obtained by
cryo-electron microscopy.

Ferritin, which was used as a test data set, is a protein
complex involved in binding iron in a wide range of
organisms [4]. In insects ferritin plays an essential role
in maintaining iron homeostasis making it of medical
and agricultural importance as a potential target against
insect disease vectors such as malaria and agricultural
pests. Insect ferritin was selected as a test protein as
it is smaller than viruses, and allows us to test whether
atomic resolution structures can be resolved using sin-
gle particle analysis. Furthermore crystals diffracting
to 2.4Å have been generated providing an independent
control for any 3D structures determined.

2 A Correlation-Based Particle
Picking Algorithm

A real-space correlation-based particle picking algo-
rithm has been developed. This method was chosen
since it can use a normalised correlation function and
perform local masking[5]. It can therefore use the rota-
tionally averaged template and mask constructed from
the image processing software IMAGIC [6].

Prior to running the algorithm, a rotationally averaged
particle sum template and a mask are constructed, using
the IMAGIC software. The template is constructed by
manually selecting a small number of particles, per-
forming translational alignment, averaging, and then
rotationally averaging to obtain a circular, symmetric
template. The mask is the same size as the template,
and has a value 1 where the template data is valid, and
0 otherwise.

The steps involved in the automatic particle picking
algorithm are described as follows:

2.1 Construction of Image Pyramids

The micrographs are generally quite large, of the order
of � 100 Mb. Therefore, to increase the algorithm’s
efficiency, an image pyramid[7] is constructed. To pre-
vent aliasing, at each level the images are filtered with
the Gaussian filter of Equation 1, before being subsam-
pled by a factor of two.

G � 1�
2πσ 2

e �
x2 � y2

2σ2 (1)

In this manner, the image is progressively halved in
size, until one of the image dimensions is less than
1000.

(a) (b)

Figure 1: Image pyramids for the (a) template and (b)
mask images, constructed from the ferritin data set.

Image pyramids are also constructed for the template
and mask images, with the same number of levels as
the micrograph. Figure 1 shows the 5-level image pyra-
mids constructed for the template and mask for the fer-
ritin data.

The original mask is a binary image consisting only
of the values 0 and 1. However, the construction of
the pyramid of mask images smooths the pixel values
with the Gaussian filter of Equation (1). This results in
pixel values between 0 and 1, particularly around the
edges of the mask. Therefore, the mask images can be
thought of as weight values which scale the contribu-
tion of each pixel to the correlation computations.

2.2 Correlation

Computation begins with the lowest resolution (ie,
smallest) image, template and mask. The Normalised
Cross Correlation (NCC) score is computed at each
image location � x � y � using Equation (2), resulting in
a 2-D array of correlation scores called a correlation
image.

2.3 Selection of Maxima

Locations where the NCC score is locally maximal are
flagged as potential particles. At this stage, there are
often a large number of spurious maxima which do not
correspond to particles.

2.4 Filtering of Maxima

This step determines which of the local maxima actu-
ally correspond to particles, by evaluating the shape of
the correlation surface in the vicinity of each maxima.

It was observed that for true particles, the correlation
surface consists of a peak surrounded by a trough,

270 Image and Vision Computing NZ



NCC � x � y � �
∑W�

i � j ��� W I � x � i � y � j � T � i � j � M � i � j ��
∑W�

i � j ��� W I2 � x � i � y � j � M � i � j �
�

∑W�
i � j ��� W T 2 � i � j � M � i � j �

(2)

where I � T and M are the image, template and mask, W is the correlation window, and � i � j ��� W indicates that a
pixel lies within the correlation window.

(a) (b)

(c) (d)

Figure 2: Correlation image and shape of the correla-
tion surface for the ferritin data: (a),(c) in the vicinity
of a particle, (b),(d) around a spurious maxima.

while for spurious maxima, the correlation values are
more or less flat, as shown in figure 2.

A recursive region-growing algorithm is used to iden-
tify valid particles. This algorithm starts with local
maxima as seed points and grows outwards in � x � y � .
For a particle to be valid, the correlation values must
drop to a certain value below the seed point, within
a given radius range, [min radius – max radius]. If
the correlation function drops below this given value
before min radius is reached, or still hasn’t dropped be-
low the given value when max radius is reached, then
the maxima is removed from the set of possible parti-
cles.

Once a set of valid particles have been identified, clus-
ters of overlapping points are removed.

2.5 Propagating points through the
Image Pyramid

The previous steps compute a set of valid particles us-
ing the lowest resolution level of the image pyramid.
These points need to be propagated up through the im-
age pyramid through to the full resolution image. This
is achieved as follows:

2.5.1 Scaling points to the next level

The particle coordinates are multiplied by two to scale
them up to the next higher resolution level of the pyra-
mid.

2.5.2 Refining particle locations

The accuracy of the scaled up particle coordinates is
refined by computing the NCC in a small neighbour-
hood around each point, using the image, template and
mask at the current pyramid level. The coordinates of
each particle are adjusted to the location of the nearest
NCC maxima. If no maxima is present within a close
neighbourhood, the point is removed from the set of
valid particles.

2.6 Writing output files

The particle locations are output as a “.plt” file (a text
format read by the IMAGIC software).

For display purposes, the software can also save the
original image with markers super-imposed at particle
locations. The user can specify either circular or square
markers, as well as the marker size.

3 Implementation and Results
The algorithm has been implemented in C++ on a 64
processor SGI Origin machine running IRIX. Parallel
programming constructs were used to take advantage
of the availability of the multiple processors.

The particle picking software has been tested on a
dataset of negatively stained ferritin images. Figure 3
shows an example of an image from the ferritin series
and the obtained results. The software appeared to
select most of the particles, and returned few false
positives. It was also able to discriminate between
single and aggregated particles.

Cryo images are typically of lower SNR and pose more
of a challenge to automatic particle picking algorithms.
Figure 4 shows a cryo image of a virus and the obtained
results. Despite the low contrast of the image, a large
number of particles were detected.

A successful particle picking algorithm must achieve
the following goals:

	 select a high proportion ( 
 90%) of particles
present in a micrograph

	 keep the number of false picks as low as possible.

The developed algorithm appears to have achieved
these goals with the tested negatively stained ferritin
and cryo virus images.

Ground truth results would typically be obtained by a
person manually selecting particles in a micrograph.
The results of particle picking algorithms could then
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compared with the manually selected points. However,
this may still not yield a true indication of an algo-
rithm’s success, since there is often a wide discrepancy
in the particles selected by different people, especially
for low contrast images.

A solution to this problem could be that a large num-
ber of people manually select particles in the test im-
ages, and a “certainty” score computed for each parti-
cle, based on the proportion of people who selected that
particle.

More “weight” would then be given to an algorithm’s
success if it selected mostly particles with a higher cer-
tainty score, rather than obscure or dubious particles
which may be false. In addition if an algorithm selects,
for example, 100% of points with a certainty score of
1.0, and say 50% of points with a certainty score of 0.5,
then the algorithm has performed as well as a human
particle picker.

Currently, discussions are underway among particle
picking groups worldwide about constructing ground
truth datasets which will then be made available [8].

The software input currently is run from the command
line and reads the required parameter values from a text
file. These parameters include:

Path to image pyramid: If an image pyramid was al-
ready constructed by a previous run of the pro-
gram, then it can be read in from saved files, re-
ducing computation time. If the image pyramid
has not yet been constructed this parameter is set
to “none”.

Correlation threshold: Maxima having correlation
scores below this threshold are not considered as
possible particle locations.

Local maxima radius: Radius used to test if a point’s
correlation score is locally maximal.

Grow threshold: Minimum difference between a
peak and its surrounding trough in the correlation
score.

Min and max radius: Minimum and maximum
radius of the peaks in the correlation score.

4 Conclusions and Further Work
A correlation-based algorithm for automatic particle
picking in electron micrograph images has been
developed. Despite this work being in its early stages,
results are encouraging. The algorithm has been shown
to be capable of selecting most of the particles, with
few false positives, with both negatively stained and
cryo images of virus particles.

The algorithm will be extended to be able to select
particles differing widely in size, shape and symmetry,
as new types of proteins and viruses are analysed. In
particular, routines will have to be developed to handle
non-symmetric particles.

Some techniques which will be considered in order to
extend the software include:

� constructing a global template for correlation by
rotationally averaging all possible particle views
and orientations.

� using edge detection techniques to complement
the existing correlation routines.

In addition, to make the software more user-friendly, a
user interface which will enable users to adjust param-
eter values will be developed.
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(a) (b) (c)

(e) (f)

Figure 3: Particle picking results for an image from the ferritin data set: (a) portion of a negatively stained
micrograph (b) normalised cross correlation image (c) local maxima (d) selected particles after filtering (e) selected
particles after clusters are removed.
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(d)
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Figure 4: Particle picking results for the virus image: (a) portion of a cryo micrograph (b) 4-level template pyramid
(c) 4-level mask pyramid (d) normalised cross correlation image (e) correlation image in the vicinity of a particle
(f) correlation surface in the vicinity of a particle (g) selected particles after filtering and local clusters are removed.
The correlation surface in the vicinity of a particle is different to that of the ferritin images in that it forms a wide
peak.
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