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Abstract

For biomedical research, high quality 3D visualization of particular anatomic structures is necessary for many
applications. To achieve this, a variety of segmentation algorithms have been developed for different problems.
For confocal microscopic images, the noise introduced during the specimen preparation process, such as the
procedure of penetration or immunostaining, may cause confocal images to be of low contrast in some regions.
This property will make 2D segmentation of some confocal images difficult and result in rugged surfaces in 3D
visualization. In this paper, we present a specific algorithm for 3D segmentation of confocal images. It
implements the 3D segmentation by a modified snake algorithm that is initialized by a registered template
dataset. The modified snake algorithm segments each 2D slice separately, and then makes an iterative refinement
to all slices by taking the local smoothness of surface into account. This will produce smoother segmentation

results and eliminate the rugged surfaces in 3D visualization.
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1 Introduction

In biomedical research, high quality 3D visualization
of particular anatomic structures is necessary for
diagnosis, surgical planning, biomedical inspection,
structure understanding, etc. The raw data acquired
from imaging modalities such as computed
tomography (CT), magnetic resonance imaging (MRI)
and confocal microscopy are conventionally
consecutive 2D images. After these slices being
stacked up, they will form a set of 3D volume data (an
appropriate interpolation algorithm may be applied
along the normal direction of 2D images to ensure an
isometric volume data). We can obtain the structures
of interest by segmenting these data, and then apply
some rendering algorithm to present a 3D
visualization for further applications. Consequently, it
is a crucial problem to find a segmentation algorithm
that can provide acceptable results for related
applications.

Due to the nature of the problem of segmentation, a
variety of specific algorithms have been developed.
When the segmenting structures are stable over the
population in study, atlas-guided approaches [1, 2, 3]
are adequate. It finds the transformation relationship
between the atlas and the target image by linear or
nonlinear registration, and then warps the pre-
segmented atlas to the target image to perform
segmentation or labeling. For confocal microscopic
images, the result of local nonlinear registration is no
longer reliable because the properties of the acquired
confocal images will vary from specimen to specimen
(Noise is introduced during the specimen preparation
process, such as the procedure of penetration or
immunostaining). Since the confocal images are
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consecutive parallel 2D images, the easiest way to
perform segmentation is to segment each 2D slice
separately by appropriate 2D segmentation algorithms
[4, 5, 6] and then 3D surface model can be
reconstructed from these resulting parallel contours [7,
8]. Although this approach is simple, it will still
encounter obstacles while dealing with confocal
microscopic images. Due to the noise mentioned
above, confocal images may be of low contrast and
provide weak edges in some regions. Thus this
approach can only promise the smoothness of 2D
contours on the images, and may yield a nonsmooth
surface along the normal direction of these parallel 2D
images. Consequently, we present a template-driven
3D segmentation algorithm that combines the two
methods mentioned above and make a modification to
provide a solution for segmentation of confocal
microscopic images.

This paper is organized as follows. Section 2
overviews the proposed algorithms. In Section 3 and 4
these algorithms will be presented in detail. The
experimental results will be discussed in Section 5,
and concluding remarks will be made in Section 6.

2 Overview of the Algorithm

The proposed algorithm is to segment particular
anatomic structures from confocal microscopic image
slices, i.e., image-stacks of parallel serial cross section.
As shown in figure 1, the algorithm consists of three
stages, preparation of template, registration of
template and a modified snake algorithm.

The first stage is to prepare the template, or atlas, for
the needs of the other two stages. The template
comprises a set of raw confocal images, which is
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Figure 1: The system flowchart

called 3D dataset, and a wireframe model that
describes the surface of pre-segmented particular
anatomic structures. We can obtain the wireframe
model by segmenting each raw slice manually and
applying surface model reconstruction algorithms [7,
8]. Only one template is necessary for each population
of study.

The second stage is to perform the registration of the
template. The global affine transformation
relationship between the template 3D dataset and the
target 3D dataset can be determined with a
multiresolution strategy. After warping the wireframe
model with the same global transformation and
resampling along the normal direction of each target
slice with an appropriate interval, we can obtain a set
of parallel contours on slices of the target 3D dataset.
These contours can be interpreted as the suggested or
estimated boundaries of segmentation results. They
will be the initial contours for the snake algorithm in
the next stage.

The final stage is to apply a modified snake algorithm.

It takes the contours suggested by the template as the
initial contours, and performs 2D snake algorithm to
each slice in the target 3D dataset. After convergence,
the resulting contours are examined to find the
contour segments that are on weak edges. These
contour segments will be applied with an additional
external force that intends to maintain the local
smoothness of surface. The modified 2D snake
algorithm is performed to each slice again iteratively
until convergence. Finally, we can obtain the
segmentation results.

How to prepare the template is not the topic of this
paper, and we will not go through it in detail. The
other two stages will be discussed in the following
sections.
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3 Registration of Template

The registration procedure determines the global
affine transformation relationship between the
template 3D dataset and the target 3D dataset, and
then provides a set of contours that suggest the
boundaries of the particular anatomic structures to be
segmented.

An affine transformation mapping from position X in
the template dataset to position Yy in the target dataset

is defined by
B P Ps P; Dol
Vs _ P, Ps Py Pu||* or y=Mx (1)
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The intensity difference between the target dataset
and the transformed template at voxel i can be defined
as

€ (p):ei(M7p13):f(MXi)_pBg(Xi) (2)
where p,, is the intensity scaling parameter, f(x,) is

the intensity of the target dataset at voxel i and g(x,)

is the intensity of the template dataset at voxel i. The
objective function to be minimized is

Zef (p)= Zj‘,(f(Mx,-)—p];g(xf))2 3)

By applying the basic optimization algorithm [1], the
iterative solution can be obtained
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Figure 2: Multiresolution strategy

There is no guarantee that the global optimum will be
achieved, since the solution might be trapped in a
local minimum. A multiresolution strategy is adopted
to alleviate this problem as shown in figure 2.

The obtained transformation parameters are applied to
the transformation of all the vertices on the template
wireframe model to bring the template wireframe
model in register. After resampling the model along
the normal direction of target slices with an
appropriate interval, we can obtain a set of parallel
contours on slices of the target 3D dataset. These
contours will be the initial contours for the snake
algorithm in the next section.

4 Modified Snake Algorithm

The first step to implement the modified snake
algorithm is to perform a traditional snake algorithm
to each slice of the target dataset. To improve the
results of the snake algorithm, adequate initial
contours are necessary and can be found in Section 3.

The traditional snake [6] is an energy-minimizing
spline. Its energy function can be written as

E= [[E,, ((5))+ By (v(5))+ E, (v(5)) Js— (5)

where E, is the internal energy of the contour due

to bending, £

image is the potential function defined on

the image plane, and £

won gives rise to the external

constraint forces. For the proposed algorithm, E.

image
is defined by the magnitude of image gradient and
E_ is implemented by the balloon model [4, 5] to

con

reduce sensitivity to contour initialization.

After convergence of the 2D snake algorithm, the
resulting contours are examined to find the contour
segments that are on weak edges. If the local average
of the image gradient magnitude at a control point on
the snake is smaller than a threshold, the control point
is referred to be on weak edges. An additional energy
will be applied to these contour segments and the
others remain original. To construct this additional
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Figure 3: Confocal images and corresponding
manually segmentation results

energy field for a particular contour segment, we find
the corresponding contour segments on adjacent and
nearby slices by the contour matching algorithm [7]
first. A Bézier surface [9] is estimated with these
contour segments to yield a smooth surface locally.
By intersecting the smooth surface with the slice
which the particular contour segment is on, we can
obtain a suggested contour segment that intends to
maintain the local smoothness of surface. The
additional energy field can be attained by applying a
fast distance transformation algorithm [10] to the
suggested contour segment. The position that is closer
to the suggested contour segment will have lower
energy. While minimizing the additional energy, a
force will pull the particular contour segment toward
the suggested contour segment.

The process of contour refinement is repeated from
slice to slice until the disparity between two
successive cycles is smaller than a threshold or the
iterations exceed a fixed number. Once the process is
completed, the final segmentation results can be
obtained.

5 Experimental Results

The confocal microscopic images used in this study
are scans of Drosophila brains. What we are trying to
segment from the raw data is the mushroom body,
lobed neuropils that are involved in olfactory learning
and memory, of a Drosophila. Two slices of original
scanned images and their corresponding manual
segmentation results can be found in figure 3 (some
regions are of low contrast and have weak edges). The
results of template registration can be found in figure
4. The template model provides more reasonable
initial contours after registration (they are closer to
the manual segmentation results). The result of the
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Figure 4: (a) suggested contours before
registration (b) suggested contours after
registration (c) manually segmentation results

modified snake algorithm is shown in figure 5. The
manual segmentation results are provided by experts.
They maintain local smoothness of surface manually
in the segmentation procedure despite the degradation
of images, and thus these manual segmentation results
are referred to as “perfect segmentation”. For slices
without weak edges, the traditional snake is adequate
for segmentation as shown in figure 5(a). By
comparing figure 5(b) and 5(c), the segmentation
result of modified snake is better than the traditional
one for slices with weak edges. The result in figure
5(c) is closer to the manual segmentation result.

6 Conclusion

In this paper, we develop a specific algorithm for 3D
segmentation of confocal images. A registration
process of template generates suggested contours of
particular anatomic structures to be segmented. And
the modified snake algorithm is applied to the target
dataset using the suggested contours as the initial
contours. The results of traditional 2D snake are
refined with a local estimation of smooth surfaces.
After an iterative process, the final segmentation
results can be obtained. The proposed algorithm
provides a more efficient way to perform 3D
segmentation than to do it manually. Also, it provides
smoother segmented results that eliminate the effect
introduced by the confocal microscopic noise that
may cause confocal images to be of low contrast and
produce weak edges in some regions.

Since the appropriate parameters of snake algorithm
are different from case to case, a parameter training
process should be performed in advance when dealing
with each new population of study. For future works,
if we can perform an automated analysis of the
contour complexity for the template, we can
determine the parameters automatically.
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Figure 5: results of
(a)(b) traditional snake
(c)modified snake (for the same slice used in (b))
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