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Abstract

This paper explores various ways by which pixel disparities along epipolar rows of a stereo image pair could be 

obtained using Chebyshev moments of the corresponding 1D images. Chebyshev moments allow us to represent 

the image features based on orthogonal basis functions, and hence to reconstruct the intensity distribution from a 

set of moments fairly accurately. Disparity estimates can be obtained either analytically from the inverse 

moment transform, or by comparing the reconstructed intensity values. The paper also presents some preliminary 

results obtained using both synthetic and real images. 
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1  Introduction

Moment functions such as geometric and Zernike 

moments, are used in several computer vision 

applications for representing global and invariant 

shape characteristics of image features. Orthogonal 

moments (Zernike, Pseudo-Zernike etc.) have been 

proved to be less sensitive to image noise when 

compared to geometric moments, and possess far 

better feature representation capabilities [1-3].  For 

example, the information redundancy measure is 

minimum in an orthogonal moment set.  Recently, 

discrete orthogonal moments based on Chebyshev 

(Tchebichef) polynomials were introduced [4-6], 

which can also be used as image descriptors with 

minimum information redundancy. Chebyshev 

moments are orthogonal in the image coordinate 

space itself, and thus provide more accurate 

reconstructions of the original image; while the 

computation of Zernike moments involves discrete 

approximations and coordinate transformations which 

severely affect their orthogonality properties in the 

image space. 

Since the image intensity distribution can be very 

accurately represented by Chebyshev moments, the 

matching of intensity values in applications such as 

stereopsis, can also be attempted in the moment 

space. Along epipolar stereo image rows, the 

correspondence between two intensity values I(x)  and 

I(x+dx)  is represented by the disparity dx at pixel x.

Using discrete orthogonal moments, we can have an 

accurate polynomial approximation of the intensity 

distribution I(x) in terms of the kernel functions 

(Chebyshev polynomials of degree p) tp(x).  Thus, in 

the moment space, the correspondence between two 

pixels in a stereo pair can be expressed as a relation 

involving terms tp(x+dx) of different orders p, where 

the coefficients are moments computed from the two 

images. The analytical characteristics of the kernel 

functions are well known. We can therefore try to 

260 Image and Vision Computing NZ



implement some novel approaches to disparity 

estimation, such as 

obtaining the values of dx by comparing 

moment terms rather than by comparing 

intensity values. 

deriving analytical solutions for dx from 

moment equations. 

The above considerations were the main motivation 

behind the work reported in this paper. The next 

section outlines the framework of Chebychev 

moments and their inverse moment transforms. A few 

analytical derivations of the disparity values from 

moment equations are given in Section 3. 

Experimental results and a discussion on the 

advantages and limitations of moment based 

stereopsis are given in Section 4.

2  Chebyshev  Moments

Given an  NxN image,  discrete orthogonal 

polynomials {tn(x)} over the image coordinate space 

satisfy the condition 
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where  (n,N)  is the squared norm of the polynomial 

set tn. The classical discrete Chebyshev polynomials 

[7,8] satisfy the above property of orthogonality (1).  

For image analysis applications, we can appropriately 

scale the above polynomials to avoid numerical 

instabilities in the computation of large-order 

moments. Some of the possible sets of scale factors 

are discussed in [4]. Alternatively, we can also make 

the polynomial functions orthonormal with  (n,N)=1, 

(which also amounts to introducing a scale factor) and 

minimize the propagation of errors using the process 

of renormalization [9].  

The Chebyshev moments of order p+q are defined as 

[4-6]  
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and,  one set of scaled Chebyshev polynomials tp(x)

can be computed using the following recurrence 

relation: 
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The image intensity function  f(x, y)  has a polynomial 

representation given by 

f(x, y) = 
1
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where the coefficients  Tpq  are the Chebyshev 

moments defined in (2).   

Left Image Right Image 

Row 30 of L-image Row 30 of R-image 

Reconstructed Images 

Figure 1:  Original and reconstructed intensity 

distributions on an image row of a stereo pair. 

We can easily write the one-dimensional versions of 

equations (2), (6) as 
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and,  f(x)  =  
1

0
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Figure 1 gives an example of a synthetic stereo image 

pair, and the original and reconstructed intensity 

distributions on a particular row. 

3  Disparity Values and Moment 
Equations

In this section, we attempt to derive analytical 

relationships between disparity values and the 

intensity moments using the equations given above. If 

we denote the one-dimensional intensity distributions 

along epipolar lines of the left and the right image by 

fl(x) and fr(x)  respectively, then a disparity value dx at 

the pixel x  establishes a correspondence in the 

intensity domain given by 

fl(x) =  fr(x+dx)       (9)   

If we use the polynomial representation of the 

intensity function as given in (8), we get 
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where  
)(l

pT ,
)(r

pT denote the pth order Chebychev 

moments of intensity functions (7) along the left and 

the right epipolar image rows, and M is a sufficiently 

large value (typically N/2 or greater) denoting the 

maximum order of moments. 

Several analytical representations for the disparity 

function dx can be derived from (10). For example, we 

can write 
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where )(xt p   denotes the derivative of  tp(x).  A pth

order polynomial will have p zeros, and hence for 

large values of p, the derivative of the function tp(x)

will have many points where the value is either zero 

or is very large. Thus (11) will not, in many cases, 

provide any meaningful results. An alternative 

approach is to compute the coarse disparity estimates 

using low-order moments (using(3),(4)) as
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and then develop an iterative update scheme for dx

using higher order moments, applying the constraint 

(10).  The plot of dx for a fixed value of x is given in 

figure 2.

Figure 2:  Variation of disparity with respect to 

coarse-to-fine reconstruction using moments.

4  Experimental Analysis

Instead of using the analytical approaches detailed in 

the previous section, we could also attempt to 

estimate disparity values in the moment space, by 

minimizing the difference between reconstructed 

intensity values: In other words, for each x, we seek a 

value dx which minimizes 
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Assuming that the disparity function is continuous in 

a neighborhood [x k, x+k] of x for small values of k,

we can redefine the cost function as: 
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The disparity values obtained for the 30th row of the 

image pair in figure 1., and for the whole image, are 

shown below. 

d = 0

d = 10

M = 10 M = 100
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Row 30 Whole image 

Figure 3: Disparity map for the stereo pair in figure1. 

The primary advantage of moment based stereo 

disparity estimation is that the disparity values can be 

represented as offsets in the arguments of kernel 

functions, whose characteristics are well known 

(unlike the intensity distribution). This allows us to 

choose cost functions that depend on the maximum 

order of moments used. The reconstructed polynomial 

approximation of the intensity values, can exhibit 

Gibb’s phenomenon (as in the case of inverse Fourier 

transform) near regions of large intensity gradients. 

Such effects will have to be eliminated for improving 

the accuracy of the estimates. Figure 4 shows the 

reconstruction of row 42 of the left-image in figure 1, 

and the effect of the Gibb’s phenomenon on disparity 

estimates. 

Row 42  Disparity 

Figure 4: Effect of Gibb’s phenomenon on disparity 

values. 

The polynomial approximation of the intensity 

function can reduce the effects of image noise. 

However, since an entire row is represented by a 

single function, background intensities will not be 

separable from those of the foreground objects. This 

can also be observed in figure 1. Such a blending of 

intensities might lead to erroneous estimates.  Figure 

6 gives the initial experimental results with real 

images in figure 5. Further improvements in the 

disparity estimates can be obtained using a dynamic 

programming approach and rectangular windows. 

Left Image Right Image 

Figure 5.  Real images used in experimental analysis. 

Figure 6.  Disparity map obtained using images in 

figure 5. 

Some possible extensions of the work reported in this 

paper are listed below. 

A progressive update of disparity values 

using (12) with local smoothness constraints. 

Combining the minimization problem (13) 

with a dynamic programming approach [10] 

for refining the disparity map. 

Application of a coarse-to-fine 

reconstruction strategy together with coarse-

to-fine dynamic programming [11]  to 

minimize the computation time. 

5  Conclusions

The paper has presented a method based on discrete 

Chebyshev moments using which the disparity values 

in a stereo image pair could be represented in the 

moment space.  Such a representation allows pixel 

disparities to be equivalently denoted by offsets in the 

argument of continuous polynomial functions. 

Consequently, several analytical as well as numerical 

characterizations of the disparity values could be 

possible, given a large set of equations involving 

moments (of various orders) of the left and right 

images. The possibility of using this approach in 

stereopsis has been explored, and some experimental 

results were presented.  

d = 0 

d = 15 
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