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Abstract

Palmprint is one of the relatively new physiological biometrics due to its stable and unique characteristics. The

rich texture information of palmprint offers one of the powerful means in personal recognition. According to

psycho-physiology study, the primary visual cortex in the visual area of human brain is responsible for creating

the basis of a three-dimensional map of visual space, and extracting features about the form and orientation of

objects. The basic model can be expressed as a linear superposition of basis functions. This idea inspired us to

implement two well known linear projection techniques, namely Principle Component Analysis (PCA) and

Independent Component Analysis (ICA) to extract the palmprint texture features. Two different frameworks of

ICA [1] are adopted to compare with PCA for the recognition performances by using three different

classification techniques. Framework I observed images as random variables and the pixels as outcomes while

framework II treated pixels as random variables and the images as outcome. We are able to show that ICA

framework II yields the best performance for identifying palmprints and it is able to provide both False

Acceptance Rate (FAR) and False Rejection Rate (FRR) as low as 1%.
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1 Introduction

Biometric has gained much attention in the security

world recently. Many types of personal authentication

systems have been developed, and palmprint

verification is one of the emerging technologies.

Biometric palmprint recognizes a person based on the

principal lines, wrinkles and ridges on the surface of

the palm. These line structures are stable and remain

unchanged throughout the life of an individual. More

importantly, no two palmprints from different

individuals are the same, and normally people do not

feel uneasy to have their palmprint images taken for

testing. Therefore palmprint recognition offers

promising future for medium-security access control

system.

An important issue in palmprint recognition is to

extract palmprint features that can discriminate an

individual from the other. There are two popular

approaches to palmprint recognition. One approach

transforms palmprint images into specific

transformation domains. Among the works that

appear in the literature are eigenpalm [2], Gabor

filters [3], Fourier Transform [4], and wavelets [5].

Another approach is to extract principal lines and

creases from the palm [6]-[9]. However, this method

is not easy because it is sometimes difficult to extract

the line structures that can discriminate every

individual well. Besides, creases and ridges of the

palm are always crossing and overlapping each other,

which complicates the feature extraction task.

The psycho-physiology study [10] suggested that the

primary visual cortex in the brain performs the form

and orientation analysis of the visual image formed by

retina through the creating a three dimensional map of

visual space from the basis functions. [11] gave the

basic model which can express an image, I(x,y) as a

linear superposition of basis functions bi(x,y):

I(x,y) =

1

( , )
n

i i

i

s b x y
=
∑ (1)

where si are feature coefficients. These basis

functions, bi(x,y) are able to capture the inherent

structure of the palmprint texture, and thus inspired us

to employ two well-known linear projection

techniques, namely principal component analysis

(PCA) and independent component analysis (ICA), to

create a set of compact features for effective

recognition task. PCA and ICA compute a set of basis

vector, bi(x,y), from a set of palmprint images, and the

images are projected into the compressed subspace to

obtain a set of coefficients, si. New test images are

then matched to these known coefficients by

projecting them onto the basis vectors and finding the

closest coefficients in the subspace. PCA is a

canonical technique to find useful image

representations in compressed subspace. It finds a set

of basis vectors, bi(x,y) such that in this new basis, bi

are uncorrelated and Gaussian; whereas in ICA, bi are

statistically independent and non-Gaussian.

Intuitively, lack of correlation determines the second-

degree cross moment (covariance) of a multivariate

distribution, while in general statistical independence
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determine all of the cross moments. Therefore, PCA

can only separate pair-wise linear dependencies

between pixels whilst ICA offers a more generalized

method which can separate higher-order dependency.

According to [1], there are two types of

implementation frameworks for ICA in the image

recognition task. Framework I treats images as

random variables and pixels as observations; while

Framework II coins pixels as random variables and

images as observations. In framework I, the basis

vectors obtained are approximately independent, but

the coefficients representing each image are not

necessarily independent. On the other hand,

framework II finds a representation in which all the

coefficients are statistically independent. In the

perspective of texture analysis in palmprint images,

Framework I and II can be interpreted as local

features and global texture features extractor,

respectively. Framework I is sparse within images

across pixels, it produces localized features that are

only influenced by small portions of the image. On

the other hand, Framework II is sparse across images

and produces global features. Hence, ICA offers a

well defined technique either for the local or global

palmprint feature extraction.

2 Background

2.1 PCA

PCA has been widely used for dimensionality

reduction in computer vision. Result shows that PCA

also performs well in various recognition tasks [2],

[12], [13]. In our context, the basis vectors, bi(x,y)

generated from a set of palmprint images are called

eigenpalm, as they have the same dimension as the

original images and are like palmprint in appearance,

as shown in Figure 2(a). Recognition is performed by

projecting a new image into the subspace spanned by

the eigenpalms and then classifying the palm by

comparing its position in palm space with the

positions of known individuals.

More formally, let us consider a set of M palmprint

images, i1, i2, … , iM , the average palm of the set is

defined as

1

1 M

j

j

i i
M =

= ∑ (2)

Each palmprint image differs from the average palm

i , by the vector iinn −=φ . A covariance matrix is

constructed where:

1

M
T

j j

j

C φ φ
=

= ∑ (3)

Then, eigenvectors, vk and eigenvalues, λk with

symmetric matrix C are calculated. vk determine the

linear combination of M difference images with φ to

form the eigenpalms:

1

M

l lk k

k

b v φ
=

= ∑ , 1,...,l M= (4)

From these eigenpalms, K(<M) eigenpalms are

selected to correspond to the K highest eigenvalues.

The set of palmprint images, {i} is transformed into

its eigenpalm components (projected into the palm

space) by the operation:

( )nk k nb i iω = − (5)

where n = 1, … ,M and k=1, … ,K.

The weights obtained form a vector

1 2[ , ,..., ]n n n nKω ω ωΩ = that describes the

contribution of each eigenpalm in representing the

input palm image, treating eigenpalms as a basis set

for palm images.

2.2 ICA

The basic idea of ICA is to decompose an observed

signal (mixed signal) into a set of linearly

independent signals. When applied in palmprint

recognition, the palmprint images are considered as

the mixture of an unknown set of statistically

independent source images by an unknown mixing

matrix. A separating matrix is learnt by ICA to

recover a set of statistically independent basis images

(Figure 1).

separating
matrix

s x s

A W

source
images

mixing
matrix

observed
mixture

estimation
of s

ˆ

Figure 1: ICA implementations on palmprint

recognition.

More formally, let s be the vector of unknown

source images and x be the vector of observed

mixtures. If A is the unknown mixing matrix, then

the mixing process is written as

x As= $ (6)

The goal of ICA is to find the separating matrix W

such that

s Wx=$ (7)

However, there is no closed form expression to find

W. Instead, many iterative algorithms are used to

approximate W in order to optimize independence of

s$ . Thus, the vector s$ or equivalent to ( , )ib x y in

(1), is actually an estimate of the true source s. In this

paper, the InfoMax algorithm [1] is deployed.
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Basis generated by:

i)   PCA

(a)

ii)   ICA framework I

(b)

iii) ICA framework II

(c)

Figure 2: Vector basis generated by each technique. (a) represents basis for six eigenvectors with 6 highest 

eigenvalues for PCA. (b) shows six localized basis vector for ICA framework I. (c) depics six non-localized ICA 

basis vectors for ICA framework II.

Sometimes, it is expedient to work on lower

dimensionality. Preprocessing steps can be applied to

x to reduce the dimension space. There are two

common preprocessing steps in ICA. The first step is

to centered the images as,

$ { }x x E x= − (8)

such that ${ } 0E x = . This enables ICA to deal with

only zero mean data.

The next step is to apply whitening transform V to the

data such that

1/ 2 T
V D R

−= (9)

where D is the eigenvalues on the diagonal and R is

the orthogonal eigenvectors of the covariance matrix

of $x . The whitening process helps to uncorrelate the

data so that PCA can work with unit variance.

2.2.1 Framework I: Statistically 
Independent Basis Image

In ICA framework I, the palm images are variables

and the pixel values provide observation for the

variables. The source separation is therefore

performed on palm space.

In order to reduce the number of independent

components produced by ICA, PCA is first applied to

the data to obtain an eigenpalm of dimension m (as

described by Bartlett and colleagues in [1]). The

InfoMax algorithm is then applied to the eigenpalm to

minimize the statistical independence among the

resulting basis vectors. The pre-application of PCA

can discard small trailing eigenvalues before

whitening and reduce computational complexity by

minimizing pair-wise dependency [14].

To describe framework I more formally, let the input

to ICA, V, be a p by m matrix, where p represents the

number of pixels in the training image, and m be the

first m eigenvectors of a set of n palm images (section

2.1). As rows of the input matrix to ICA are variables

and the columns are observations, therefore, ICA is

performed on
T
V .

After that, the independent basis vector, $S , is

computed as follows:

$
1

*S W V
−= (10)

Next, by taking R as the PCA coefficient

where *R X V= , with X representing the n set of

zero-mean images (image data is contained in each

row), the coefficients matrix of ICA can be calculated

as

1*B R W
−= (11)

Therefore, the reconstruction of the original palmprint

image can be achieved by

$*X B S= (12)

Palmerston North, November 2003 229



The ICA basis images from framework I shown in

Figure 2(b) are spatially localized in various portions

in the palmprint image, and they bear a striking

resemblance to the receptive fields in the primary

visual cortex.

2.2.2 Framework II: Statistically
Independent Coefficient

The goal in framework II is to find statistically

independent coefficients for the input image.

Therefore, the input to ICA, V, is transposed from

framework I, where pixels are variables and images

are observation. Thus, the source separation is

performed on the pixels. However, in this work, ICA

is performed on the PCA coefficients rather than

directly on the input images to reduce the

dimensionality as in [1].

Next, the statistically independent coefficients are

computed as

* T
U W R= (13)

and the basis vectors are obtained from the columns

of
1*V W

−
. The basis generated by framework II

shows more globalized features, as shown in Figure

2(c).

3 Palmprint Recoginition System

To perform palmprint recognition, a database

containing 600 palm images from 100 users, with 6

images from each, is collected. The first three images

are used as training data while the remaining three are

deployed as testing data. An optical scanner is used as

the image acquiring devices as it provides fast and

high-resolution capability. Resolution of 200 dpi is

adopted in this paper. The users are allowed to place

their hands freely on the platform of the scanner when

scanned. This results in palmprint images with

different shifts and rotation. Therefore, some

preprocessing jobs are required to correct the

orientation of the image [15]. Next, the region of

interest (ROI) of the palm is extracted so that the

feature extraction process can be performed on a fixed

size image. The ROI used in the experiment is of size

150 x 150.

The proposed palmprint recognition system consists

of the following three steps:

i) Off-line: Compute the basis vectors from the

training images. 

ii) Off-line: Project the images into the subspace.

iii) On-line: Project a new test image into the

subspace and obtain the closest matching image

as measured in the subspace.

When applying PCA, several feature lengths, from 20

to 100, are tested. At first, larger feature length

provide higher recognition rate, however, this is only

true to a certain point as the recognition rate become

worse when the feature lengths is extended further.

Experimental result shows that feature lengths with 55

principal components yield the best performance by

using our palmprint database.

After that, these feature lengths are used as the input

to ICA calculation. Instead of processing on images

with 55m = (instead of 300m = ) in ICA, the

computational load can be reduced significantly.

Both PCA and ICA basis features are data dependent

in the sense that they are learned from the training

data at hand, and they will be different for different

training data. This causes high processing load as

every new user to the system require re-calculation of

the data.

4 Result and Discussion

The recognition rates of the experiment are shown in

Section 4.1. Further analysis is performed to find the

verification rate of the system, and some discussion

and result are presented in Section 4.2.

4.1 Recognition Rate

The recognition rates of PCA and ICA framework I

and II are shown in Table 1 and Table 2, respectively.

Three types of classifiers are tested, namely Euclidean

distance, cosine measure and probabilistic neural

network (PNN). Euclidean distance is the simplest

distance matching algorithm among all. Cosine

measure can be used since ICA allows the basis

vectors to be non-orthogonal, and the angles and

distances between images differ from each other.

Probabilistic neural network is a kind of radial basis

network suitable for classification problems. Table 1

shows the performance recognition rates of PCA

using these distance metrics.

Table 1: Recognition rate of PCA using three types of

classifiers.

Number of

principal

component

Euclidean

Distance

(%)

Cosine

Measure

(%)

Probabilistic

Neural

Network

(%)

40 89.6667 82.3333 90.0000

45 90.0000 83.6667 90.6667

50 91.3333 84.3333 91.0000

55 91.3333 84.3333 93.3333

60 91.3333 84.3333 91.0000

70 90.6667 84.0000 90.0000

Experimental result shows that PCA with 55 principal

components yield the best performance, and the

recognition rate drops after this point. This feature

length of 55 is then used as the input to ICA

calculation. The recognition rates of ICA Framework

I and II are provided in Table 2.

230 Image and Vision Computing NZ



Table 2: Recognition rates of ICA Framework I and

Framework II by using three types of classifiers.

Method Euclidean

Distance

(%)

Cosine

Measure

(%)

Probabilistic

Neural

Network

(%)

ICA Fr. I 91.6667 94.0000 97.0000

ICA Fr. II 92.3333 95.6667 97.6667

It can be observed that ICA performs better using

cosine measure than Euclidean distance; while PCA

performs better using Euclidean distance rather than

cosine. This shows that cosine measure can be used to

retrieve images in the ICA subspace effectively but

not in PCA. On the other hand, result shows that

probabilistic neural network outperforms the other

two measurements. This is due to the reason that PNN

can generalized well on the data that it has not seen

before. Euclidean distance and cosine measure does

not take into account the subtle differences between

the images. Therefore, they perform poorly as

compared to PNN. PNN can account for these subtle

differences and is able to learn effectively the

important features of the modelled data.

From the experimental result, it is obvious that both

frameworks for ICA outperform PCA no matter what

distance metrics were used. The result is of no doubt

as ICA has the advantage to decorrelate the higher

dependency relationship in the images.

4.2 Verification Rate

Further analysis of the result was performed by

calculating the standard error rates (false acceptance

rate (FAR) and false rejection rate (FRR)). FAR and

FRR are defined, respectively, as

100%
Number of accepted imposter claims

FAR
Total number of imposter accesses

= × (15)

100%
Number of rejected genuine claims

FRR
Total number of genuine accesses

= × (16)

The system threshold value is obtained based on the

Equal Error Rate (EER) criteria where FAR = FRR.

This is based on the rationale that both rates must be

as low as possible for the biometric system to work

effectively. Another performance measurement is

obtained from FAR and FRR which is called Total

Success Rate (TSR). It represents the verification rate

of the system and is calculated as follow:

(1 ) 100%
FAR FRR

TSR
Total number of accesses

+= − × (16)

Table 3 shows the verification rates of PCA, ICA

framework I and II by using their respective best

distance measures, specifically Euclidean Distance for

PCA and Cosine Measure for ICA.

Table 3: Verification rate of PCA and the two ICA

frameworks.

Method FAR(%) FRR(%) TSR(%)

PCA(PC: 55) 3.0707 3.0000 96.9300

ICA Fr. I 1.8081 2.0000 98.1900

ICA Fr. II 1.0000 1.0000 99.0000

Experimental result shows that both ICA framework I

and II outperforms PCA; and ICA framework II

outperforms framework I. The first outcome is

reasonable as ICA can separate the higher-order

dependency among the basis vectors (more important

information is always contained in higher-order

statistics of the image). The result of the later can be

explained from the global versus local features point

of view. As framework I is sparse within images

across pixels, it produces localized features that are

only influenced by small parts of the image. On the

other hand, framework II is sparse across image and

produces global features. Viewing the nature of the

texture of a palmprint image, recognition by parts

(using localized features) is not suitable as the prints

are made up of many crossing and overlapping ridges.

When treated individually, the lines cannot contribute

much to the recognition process. Some lines are so

thin and unobvious that they will simply be ignored

by the feature extraction algorithm. Therefore,

localized features of palmprints cannot provide good

recognition; and performance can only be improved

when all the palmprints are treated as a whole. In

other word, palmprint recognition is holistic and

requires spatially overlapping feature vectors.

5 Conclusion

In this paper, a palmprint verification system is

developed by using PCA and ICA algorithms. ICA is

implemented by using two different frameworks,

which are called framework I and II respectively.

Framework I produces outputs that were sparse in

space, therefore it produces local basis images. On the

contrary, framework II produces outputs that were

sparse across images; therefore it produces holistic

basis images. Three types of distance metrics are used

to assess the efficiency of the algorithms, and

probabilistic neural network is the best classifier

among all. Experimental result shows that both ICA

representations outperform PCA, while ICA

framework II outperforms framework II. A

verification rate of 99% can be achieved by using

framework II in our system. This shows that

palmprint recognition performs well by using global

(holistic) features as compared to localized features.
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