
Watermarking Still Images Using Parametrized 
Wavelet Systems 

Zhuan Qing Huang and Zhuhan Jiang 

School of Computing and IT, University of Western Sydney, NSW 2150, Australia 

zhuang@cit.uws.edu.au, z.jiang@uws.edu.au

Abstract: We propose a wavelet-based watermarking scheme by dynamically constructing the filters 

embedded with the watermark as well as potentially the private key patterns associated with the individual

images. This scheme explores the watermark dissemination in a non-traditional dimension, allows the dual 

purpose of the embedded data as either watermarks or private keys, and offers additional analysis and 

optimization through the dynamic filter choices. We also propose an additional systematic watermark detection 

scheme in terms of a trend criterion, which proves to be both robust and flexible. Moreover, our watermarking

and detection processes are also investigated to include the defence against noises, cropping and distortions, and 

to include the non-availability of the original images at the detections. 
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1 Introduction 

Watermarking is an increasingly important

technology for the copyright protection and

ownership authentication for the multimedia data that

flourish at the advent of the Internet. For digital still 

images, the purpose of watermarking is typically to

hide some identity data in the host images so that the

data can be later extracted, or simply tested for the

existence, to demonstrate the ownership of the

images. Initially concentrated mostly on the pixel

domain [1,2], the study of watermarking has moved in

force to the transformed domains induced by such as 

DCT and wavelets [1,3-5]. In particular, wavelet-

based transforms and algorithms gained much

popularity in recent years. These include adding 

pseudo-random codes to the large coefficients at the

high and middle frequency bands [3], storing filters as 

the private authentication data [4], and embedding

decomposed watermarks of different resolutions into

the corresponding resolution of the decomposed

images [5], to name a few. In a wavelet-transformed

domain, a traditional scheme will typically embed a 

watermark by superposing or replacing a selected

subband with a signature image pattern. In this paper,

however, we proposed a method that embeds

watermarks, either in entirety or in part, directly into

the wavelet filters that are to be dynamically

constructed. This approach thus explores the

watermark dissemination in a non-traditional 

perspective, offers more room for analysis and 

optimization due to the ample choices of the filters, 

and allows the embedded data as either watermarks or 

private keys. By a private key, we mean a bit pattern

privately held by the owner of a particular original

image. The key needs to be produced to a legal

authority in order to be able to successfully extract a

watermark or test for its existence. As such, the use of

a private key will better safeguard the watermarking

scheme against potential watermark theft and possible

collusions. Our proposed method will hence lead to 

the improved security, robustness as well as

flexibility. In what follows, we first in section 2

introduce the technical background and our proposed

watermarking strategy with detailed analysis on its

feasibility and legitimacy. We will outline the

watermarking process as well as the detection process

that require no original images. Section 3 is then

dedicated to the study of detecting watermarks that

were subject to cropping or other noises or distortions.

We will then conduct further watermarking

experiments in section 4. Final conclusions are made

in section 5. 

2 Proposed Algorithm

2.1 Main strategy

It is known that wavelet

filters can decorrelate

signals into averages
and details [6], and 

likewise can also

decompose cascadingly 

an image into multiple

levels of bands, see 

Figure 1 for the

multiresolutional

decomposition, via the

following analysis

filters [7,8]
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Decomposition



cj = k Z hk-2j xk,

dj = k Z (-1)k h1-k+2j xk  ,           (1) 

where Z denotes the set of all integers. The 
reconstruction can be done recursively in the reverse 

order through the repeated use of  the synthesis filter 

xk = j Z hk-2j cj + j Z (-1)kh1+k-2j dj, k Z  ,        (2) 

see Figures 2 and 3. Moreover, quality filters will 
result in better separation or decorrelation of the

details from the smoother components of the image,

leaving filtered bands more generically independent 
of the others. We may also denote quadrants LL, HL,

HH and LH by 1, 2, 3 and 4 respectively later on. For 

a given set of filter coefficients {hi, hj}, (1) uniquely
characterizes the subbands. Characteristics or data

embedded in such a channel band will resonantly 
resurface when undergone the same filters.  If for each 

level of decomposition via (1) we utilize 1 set of

filters for the horizontal passing and another for the 
vertical passing, we can then collect an ordered set of

filters whose definition uniquely specifies the
definition of the finally filtered out subband. If we 

replace this subband with a sorted pattern or another

“landmark” pattern and synthesize all the way back to
a full-sized image, then the resulting image is a 

watermarked image and the watermark essentially

consists of all the information of the path filters and
the subband replacement. We can also partition such

info into 2 sets of bit patterns, with 1 set being the 

true watermark and the other being the private key.
This way, when the private key is available, an image

can be tested to see if it carries a particular 

watermark.

How do we embed watermarks into wavelet filters,

then? If we define A(z) = k zAkz
-k with Ak being a 

2x2 matrix of  (h2k, h2k+1) in the 1st row and (h1-2k, -h-

2k) in the 2nd, then A(z) induces orthogonal wavelet 
filters iff A(z) admits the following factorization [6] 

A(z) =zd   1 0 R( 0) 1  0 R( 1) …  1  0 R( q) ,
                  0               0 z-1 0 z-1

R( ) =      cos     sin

                               -sin    cos     . (3)

with  = 1, q  0, q, d Z and 0 + 1 + … + q /4

(mod 2 ). The ’s can be used to carry the watermark

bit patterns. We will in fact partition the ’s into 2 
subsets: one contains a predefined watermark, and the

other contains a private key or can be optimized to 

improve the quality of filters. For a step size , if i-

th watermark bit is 1, then one of the k’s should have 

a contribution of 2i  if it is to contain that portion of
watermark.

2.2 Design and analysis of the 
watermarking method 

A watermarking scheme should be designed to be as 

robust as possible, capable of resisting to certain
extent the distortions arising from such as artificial

noises, cropping and lossy compression. The step size 

should be chosen so that the error due to the 
difference of the exact watermark and that extracted
through the use of an incorrect filter coefficient with 

an error larger than  should exceed clearly the
difference caused by visually tolerable white noises.

Hence the choice of  is a balance between better
robustness and higher storage capacity for the 

watermark: a larger  leads to a more robust
watermark at the cost of storing lesser watermark bits 

per filter. A threshold for  will thus be first 
determined here by analyzing both the effect of white

noises and the effect of  at distinguishing 

effectively a selected subband. For this purpose, we 
first narrow down our algorithms to two more precise

forms. The first is a simplistic approach without loss

of generality, and will be termed sorting approach.
The selected subband will be replaced by its sorted

elements. The ordering inside the subband is thus the
only feature that characterizes the existence of the

watermark carried exclusively by the filter 

coefficients. The second approach is to replace the
selected subband with a predefined pattern, which can 

be used as part of the watermark or simply as the 

indication of the watermark existence. This pattern
will also be adjusted for the energy so as to improve

the visual fidelity of the watermarked images. This 2nd

approach will be termed pattern approach. In both 
approaches, we also scramble the replaced subband

for extra security protection. For any vector seed S of 

positive integers and any vector B of subband 
elements, if the 1st element of S is denoted by s, we 

first fetch the s-th element as the 1st element of the 

scrambled vector. We then remove the fetched 
element from B, move all the earlier elements in B to 

the bottom of B in the same order, and move the 1st

element of S to the bottom of S. Treat B as cyclic and 
repeat this process until B becomes empty. The 

resulting vector is then our scrambled vector. The

choice of a scrambling seed can be random, if it is to 
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be used as a private key, and can also be conveniently
induced by the watermark-embedded filter

coefficients automatically.

be used as a private key, and can also be conveniently
induced by the watermark-embedded filter

coefficients automatically.

To estimate a proper  threshold, we first illustrate
our analysis with the sorting approach on the Lena
image of 256x256 pixels. We choose q=2 in (3),

hence each filter has 2 free  parameters. The 
decomposition levels are 4 and the middle frequency

bands are chosen for the band replacement. We add 1-

10% white noises and let 0 vary with =.01. The 
results are summarized in Tables 1 and 2, where A-B 

are 2 selected typical cases for 1=.1 or .3.
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      Figure 6: Fidelity effect of 

Table 1. Effect of   in RMS (  = x 10-2)Table 1. Effect of   in RMS (  = x 10-2)

11 22 33 44 55 66 77 88 99 1010

A 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

B 0.4 0.8 1.2 1.6 1.9 2.3 2.7 3.1 3.5 3.9

Table 2. Effect of noise in RMS

n% 1 2 3 4 5 6 7 8 9 10

A 0.6 1.2 1.9 2.4 3.0 3.8 4.4 4.9 5.7 6.1

B 0.7 1.4 1.9 2.6 3.4 3.9 4.3 5.4 6.1 6.5

We observe that the pattern can be easily detected 

when the ’s deviation is less than 0.06, as is

indicated by RMS 2.4 at =0.06 in Table 1. On the
other hand, the pattern can be properly detected when 

the white noises are no more than 4%, as is indicated

by RMS 2.5 in Table 2. Other decomposition paths 
and “landmark” patterns have also been tested and 
they yield similar results. Hence, if we choose 0.06 or 

larger for , and =2.5 in RMS as the threshold for
detection, we can say that the watermark is detectable

when noises are less than 4%. In other words, a 

change of  by a single  will result in the pattern

deviation of more than . In this test, we reserve one

for the use of private key, and use the other free  to 

carry the watermark bits. Hence the  threshold may
somewhat vary in the other regions. 

Since a filter in

(3) will 
typically have 

several free 
parameters, we 

can use all of
them to carry 

the watermark

bits. We can
also use one, or 

some of them,

to serve as part 
of a private key, or to optimize the fidelity of the 

watermarked images. The potential need for

optimization is illustrated in Figure 6, in which we

used only one  to code the watermark “lena” and let

the other to vary within [0,2 ]. The curves “a” and 

“b” correspond to the Lena image watermarked with
“lena” and “anel” respectively, while the curve

labeled by “c” corresponds to the Pout image with 
“lena” as its watermark. The figure also shows that, 

with different decomposition paths, different

watermarks and different images, the PSNR may gain
as much as about 10 dB. Hence it is worthwhile to 

forfeit a parameter to optimize the fidelity when there 

is a need to do so. The optimized  will eventually 
play the role of a private key. 
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For the given type of filters (3) and a predefined ,
the whole watermark embedding process can be 
summarized in Figure 7. We basically first decide 

what ’s are to be used to carry watermark bits, what 

and if other ’s will be used for private key or for 

optimization. We note that filter quality can be further
improved if we impose additional vanishing moments

when we have more free ’s. This will however be 
partially addressed in the following subsections along 

with the construction of biorthogonal filters. 

For the detection process, see Figure 8, we 

decompose the image with the filters having the

watermark, and unscramble the subband of the 
predefined path, and then compare it with the

anticipated pattern. If the corresponding RMS is 

smaller than the detection threshold , one can then 

Figure 8: Detection process 
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claim that the image carries the watermark. If 
otherwise, we can still apply the cropping test to be 

introduced in section 3 to further verify the watermark 

existence.

2.3 Biorthogonal filters 

We dynamically constructed the orthogonal wavelet 

filters that embed the watermark as described in the 
above. We saw that the way to generate the filters also 

allows the optimization of the filters. There is 

however another important type of wavelet systems, 
the biorthogonal wavelet filters, that can also provide 

perfect reconstruction for the images from their 

corresponding smooth and detail components [7].  

For an image represented by {xk}k Z , suppose the 

{hk} and { hk} satisfy the biorthogonality condition 

k Z hkhk+2j = j,0 , j Z            (4) 

where l,m is the Kronecker delta symbol. The filter 

coefficients {hk} and { hk} will generate two 
subbands {cj} and {dj} via (1), and the subbands can 

be synthesized by the synthesis filter via (2). The 

biorthogonal filters will become orthogonal when hk

hk holds for all k. We know the quality filters would 
highly decorrelate the image data and thus cause less 

reconstruction errors. One of the wavelet properties 

such as the number of consecutive vanishing moments 
will for instance result in better decorrelation for the 

image data. 

If we let [7] Ak =[ (h2k , g2k)
T , (h2k+1 , g2k+1)

T ]  and 

likewise for Ak, and define the  discrete moments by 

r
(0) = kr hk,   r

(1) = kr gk , 

r
(0)  = kr hk, r

(1)  = kr gk, k Z           (5) 

where r  0 is an integer, T represents vector 

transposition, gk = (-1)k h1-k and gk = (-1)k h1-k.  If the 
vanishing moments conditions 

r
(0) = 21/2 * r,0, r = 0, …, N0,

r
(0) = 21/2 * r,0, r = 0, …, N0,

r
(1) = 0,  r = 0, …, N1,

r
(1) = 0,  r = 0, …, N1           (6) 

are satisfied, for the signals {xk} sampled from any N

degree polynomial, the details dj are all zero and the 
average cj are of the type of polynomial signals due to 

(1). So the signals of any N degree polynomial 
sampled at an equal step are completely decorrelated 

when there are sufficiently many vanishing moments 

[7]. Other desirable features for a wavelet system 
include such as linear phase and minimum 

reconstruction norm. For any positive integer K,

suppose a pair of filters of linear phase has analysis 
filter with length 2K+1 and the synthesis filter with 

length 2K-1, so there are 2K+1 variables. For K = 3, 

the coefficients of the corresponding 7/5-tap filters are 
determined by the wavelet biorthogonality 

h0 h0 + 2h1 h1 + 2h2 h2 = 1 , 

h0 h2 + h1 h1 + h2 h0 + h3 h1 = 1 , 

h2 h2 + h3 h1  = 0 , 

h0 + 2h1 + 2h2 +2h3 = 21/2 , 

h0 + 2 h1 + 2 h2 = 21/2              (7) 

and the vanishing moment  0
(1) = 0,

h0 - 2 h1 + 2 h2 = 0             (8) 

The solution of (7) and (8) subsequently reads  

h1 = 21/2 /4 ,  

h2 = -21/2 h3 / 4h2 , 

h0 = 21/2 /2 – 2 h2 , 

h1 = -(2h2
2 + 5h2h3 + 2h3

2 – 21/2h3 )/(h2 + 2h3) , 

h0 = 21/2 – 2(h1 + h2 + h3) .                         (9) 

There are two free parameters h2 and h3, which can be 
used to embed the watermark. As such, we could 

potentially use one free parameter to embed the 

watermark and use the other free parameter to carry a 
private key or further watermark bits. If the filter 

length increases, then more vanishing moments may 

be imposed to improve the filter quality. It is thus 
anticipated that further improvement can be achieved 

on the filters, which will in turn reflect on the overall 

watermarking performance of our proposed scheme.  
As an example, we set the filter step to 0.01 and 

watermark the image with “lena”. Then the 

watermarked image has RMS=0.8. If the image has 
the watermark “anel” rather than “lena”, and we still 

use the filter watermarked by “lena” to decompose the 
image, then the RMS of the resulting selected band is 

12.8, which implies the image doesn’t contain “lena” 

as the watermark. The details and expansions in this 
direction will however be left to our future work.

3 Detection of Cropped Image 

One of the advantages of wavelet-based watermarking 

is its ability to spread the watermark all over the 
image. If a part of the image is cropped, it may still 

contain parts of the watermark. These parts of 

watermark may be detected by certain mechanism 
even if the image has been further scaled or rotated. 

Our proposed method for detecting watermark from a 

cropped image is as the following. Suppose an image 
is suspected of being cropped from a watermarked 

image with the watermark W. We first add white 

noises N to the watermarked image in full size, and 
assume that the noises n in the cropped image are 

tolerable in terms of the caused visual degradation. 

We choose N such that N>>n, i.e. noises N are 
significantly larger than noise n. We then replace the 

cropped region in the full-sized image by the 
suspected cropped image, see Figure 9. If we extract 

the watermark as usual, the difference of the extracted 

pattern and the anticipated pattern is expected to 
decrease when the cropped area is replaced with the 

cropped image. The larger the cropped area, the more 



the difference decreases. If the cropped image has no
watermark W or contains a different watermark, the

difference is expected to increase. If we partition the 

cropped image into several large enough regions, then 
the above trend of difference changes will also be

observed. Although the precise quantitative 

measurement is still under investigation, this trend
criterion is already accurate enough in all the tests we

have conducted. Repeated generation of noises N for 

the repeated tests could also further increase the 
confidence of the watermark existence.

For a given 
cropped image,

to illustrate, we

just divide it
into 4 pieces 

equally. Then 

we add the 
white noises 

with 1% to 10% 

of the 
magnitude to 

the cropped 

image, and add
white noises of 

ratio 10% to the original watermarked image. The 

cropped image will be put back piecewise to replace 
the corresponding region in the watermarked image

with noises N. The size of the cropped images for

testing ranges from 8x8, 16x16, 32x32, 48x48, 64x64, 
128x128, 192x192, to 240x240. The results for the

case of 128x128 are showed in Figures 10 and 11, and 
are consistent with our earlier anticipation. In the case

the cropped image has no specified watermark, the 

RMS induced from the reconstructed image increases 
sharply with the replacement of each additional piece 

of the cropped image. When the size of cropped 

image is larger than 48x48 (3.5% of the original) and
the noise ratio in the cropped image is less than 50%

of that for the watermarked image, the decreasing 

trend of RMS is very strong. When the noise ratio in
the cropped image is larger than 50% of that in

watermarked image, the trend may have occasional

exceptions. However this is not a problem as this 
trend is still well distinguished from the sharp 

increasing trend of RMS of the cropped image

without the specified watermark. When the size of 
cropped image is less than 48x48, the RMS changes

are small and inconclusive. We also found the RMS

for the patched image containing specified watermark
is smaller than or very close to the RMS of the 

watermarked image with noise ratio 10%, while the
RMS for the case of the cropped image without

specified watermark is much larger than the RMS of 

the watermarked image with noise ratio 10%. This 
also supports well our detection scheme.

We note that the above strategy proposed for testing

watermarks inside cropped images can also be applied
to normal full-sized images, as in Figure 8. For the 

full-sized complete image, the owner can divide it 
into several pieces each of which is larger than the 

minimal detectable area.

Although the analysis here is restricted to the square 
cropped images, its principle also applies to the 

irregularly cropped images. The details will however 

be delegated to our next work. We also note that the 
rescaling in a cropped image has no significant effects 

on the watermark detection if the lowest frequency

band is not chosen all the way for the decomposition.
For the rotational distortion, it just needs to rotate the

image back to the normal position, and then conducts 
detection for the cropped images.

n

N

Figure 9: Patched image

Figure 10: Cropped image has predefined watermark

Figure 11: Image has no predefined watermark

I Iw

Figure 12: Original and watermarked Barbara 

4 Experiments 

We now watermark the Barbara image of size

512x512 with q=2 in (3) and the decomposition path 

LH1, HL2, LH3, LH4, i.e. path 2423. We will use 0

for the watermark “barbara” and 1 for a private key.

We first allocate 5 bits to store a letter in one ,



causing =0.1, and then induces all the filters from 
(3). We then decompose the image I using the filters 
with the “barbara” watermark, replace the filtered 

subband with the pattern, and finally synthesize back 

the watermarked image Iw as in Figure 12. We now 
use different filters or add white noises to the 

watermarked image for testing. The results are 

summarized in Table 3. 

Table 3: Watermark detection via threshold 

Path Watermark Noise PSNR RMS

2423 barbara 319.71 0 <

2424 barbara 20.18 24.99 >

2443 barbara 19.90 25.81 >

2423 barbara 2% 44.87 1.46 <

2423 barbara 3% 40.83 2.32 <

2423 barbara 4% 38.67 2.97 >

2423 barbara 5% 36.80 3.68 >

2423 carbara 37.11 3.56 >

2423 basbara 37.54 3.384 >

Since we chose =2.5 earlier on as the threshold for 

the detection, we see from Table 3 that when white 
noises added to the image are less than 4%, the 

watermark can be detected immediately. If the noises 
are larger than 4%, the threshold method may be 

inconclusive. We could however still apply the trend 

criterion designed for the cropped images to the full-
sized images as well.  

In the following test, we add white noise 5% to the 

Barbara image, since the RMS of the result band         

exceeds the detection threshold , we further carry out 

the cropping test on it. We first crop this image into 
pieces with size of 48x72 which is larger than the 

detectable size of 48x48, next patch back the cropped 

pieces to the watermarked image containing 10% 
white noise, then observe the trend of RMS. Table 4 

below displays this trend, and it also provides the 
results for other test images and for different 

watermarks or patterns. 

Table 4: Watermark detection via cropping test 

Wat

or

in

ermark 

pattern 

image
barbara lena None

Other

pattern

Piece 1 6.990 7.059 7.151 7.371
Piece 2 6.971 7.142 7.354 7.732

R Piece 3 6.935 7.190 7.506 7.896

M Piece 4 6.883 7.253 7.630 8.049

S Piece 5 6.853 7.316 7.728 8.161
Piece 6 6.811 7.315 7.823 8.284

… … … … …

Full 3.632 8.327 21.884 21.905

Trend decrease increase increase increase
 RM 

noisE 7.018

S of 10% < > > >

Det ection Yes No No No

From Table 4, we can see the strictly decreasing trend 
of RMS with the patching up of each additional piece 

of the cropped image if the image contains the 
“barbara” watermark, while for the image containing 

“lena” watermark or no watermarks at all, the trend of 

RMS increases with each addition of the pieces. If the 
private key pattern has been changed, the trend of 

corresponding RMS also increases with the patching 

up of the pieces. We also note that the RMS’ of the 
image containing the predefined watermark are 

always smaller than the RMS of the image with 10% 

noise, while the RMS’ in the other three cases in 
Table 4 become larger than the RMS of the image 

with 10% noise. 

5 Conclusion 

We proposed and analyzed a watermarking scheme 

based on embedding watermarks, and optionally 

private keys, inside the wavelet filters, along with the 
investigation of the watermark security and 

robustness. The detection process requires no original 

image, and also handles well those cropped from the 
watermarked images with potential addition of noises 

and other distortions. 
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