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Abstract
The reduction of output bitrate of video source (of I-frames) and consequently the improvement of multiplexer’s 
gain are the main target of this paper. In reducing the bitrate, the SVD transform coding as an attractive 
alternative to the DCT coding was adopted. The SVD transformation just like DCT is a lossy image 
compression, but it can achieve a higher rate. The rank of SVD matrix transform was limited to maximum 21% 
of original value. Then our new algorithm so called ATSVD was introduced in further adaptively reducing the 
bitrate according to the details of image. Consequently, the output bitrate of video source was reduced to a 
fraction of its original value.  

Keywords: Singular Value Decomposition, Autoregressive Function, Discrete Cosine Transform. 

1   Introduction 

In this paper, a congestion recovery algorithm was 
proposed to improve the delivery of real-time 
multimedia, more specifically video streams in a more 
effective manner while sustaining the video quality 
subsequent to packet and cell losses. The high-bandwidth 
requirement, real-time delivery constraints, enhancement 
of congestion control policies in high-speed networks and 
maintenance of high-quality videos motivated the design 
for further improvement in multimedia delivery 
techniques. Except for a small number of traffic 
management and congestion control policies that mainly 
attempt to deal with the sources of congestion, majority 
of proposed techniques aim rather to distribute the 
network resources so as to have a fairer operating system 
for all applications. Take the video rate-change based 
transcoders and video coarse vector quantization 
techniques as examples of the source dealt congestion 
control system whereby many proposed techniques [1], 
[2], [3], so far, are experienced problems such as 
excessive-delay response and access latency, 
inappropriate for real-time multimedia applications, 
progressive and unmanaged degradation and deterioration 
of video quality, the need for a large storage capacity, 
incompatible for high-speed network and the need for a 
high computing power. The challenge in designing an 
effective traffic management algorithm for the real-time 
multimedia over high-speed networks is to consider some 
compromises at source as well as network level, 
compromises such as fast processing and delivery speed 
verses high-standard multimedia quality or jitter-free bit 
stream, etc. Of course, video streams with smooth, 
predictable, error resilient, scalable and most importantly 
low bit-rate are by far the most desirable feature of any 

source generated multimedia streams. On the other hand, 
flexibility in bandwidth allocation, guaranteed quality of 
service, maximization of connection per requested call, 
none or short queuing delay, multiple protocol 
exchangeability and support, etc. can be encountered as 
the most attractive advancements in network delivery 
system. 
In response to network requirements, dynamic bandwidth 
allocation algorithms that can adaptively respond to 
traffic variations have been proposed [4], [5], and [6] in 
order to overcome the above difficulties. Tanthawichian 
et al. [7] proposed a dynamic bandwidth allocation based 
on a heuristic approach made up of two functions, a time 
�-quartile function to characterize the source behaviour 
and a function to bound the amount of bandwidth served 
by the multiplexer. Others such as Benjapolakul et al. [8] 
used a neural network method to propose an aggregate 
bandwidth allocation scheme for heterogeneous sources 
in the ATM network. The problem with these proposals is 
due to occasional under- and overestimation of the actual 
required bandwidth that yields to inefficient use of 
bandwidth, network congestion and/or loss of data. Liu at 
el [9] and others [10], [11] utilized the autocorrelation 
between bitrate of multimedia streams to create a traffic 
model. Because of the diversity of traffic models 
proposed for source generated multimedia streams [12], 
[13], [14], etc., hence, we cannot reliably implement an 
implicit traffic policy for high-speed networks including 
ATM network services based on these models. 
In dealing with the sources of video traffic, many 
components of the video compression structure can be 
addressed to increase the compression ratio individually 
and independently, so as to reduce the transmission 
bitrate for the same faithful reconstructable video, and 
consequently and particularly for ATM network increase 
the gain of ATM statistical multiplexer by increasing the 
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number of call admission per channel. In general, the 
throughput of the system will dramatically increase. The 
hierarchical structure of video encoders whose generating 
the traffics enabled the researchers to tackle effectively 
each module in isolation, modules such as redundant bit 
removal, variable length coding, variable quantization 
and etc. Although the order of processing modules is 
fixed, the details of each module can be manipulated 
independently of others as long as the output of module 
conforms to the input structure of the subsequent 
modules. Various types of video application employing 
different encoding procedure result in different bitrate 
characteristic. However, the most predominant encoder of 
all, MPEG, is open to any modification if only the 
structure of output bit stream remains recognizable by the 
standard. The improvement of the transform coding can 
play major role not only in achieving lower output bitrate 
but also the quality of decoded video, speed of encoding 
and the magnitude of SNR.  
A typical image or video coding system consists of a 
number of components such as analyzer, quantizer, and 
entropy coder, with a number of possibilities for each 
component. Analyzer can operate on entire or portion of 
the signal, or on error predicted signal by one of many 
available mechanisms such as Discrete Cosine Transform 
(DCT), Discrete Wavelet Transform (DWT), Fast Fourier 
Transform (FFT), Discrete Fourier Transform (DFT), 
Sub-bands or Singular Value Decomposition Transform 
(SVD). These transform methods in the context of video 
coding operate on individual blocks of frames. Among all 
mentioned transform methods, most commonly adopted 
technique, DCT, has gained a lot of popularity because of 
its relatively high speed. The DCT has relatively only a 
good energy compaction property, nevertheless, it is 
widely used for image coding. Also, the DCT transform 
can be computed efficiently, the basis functions are fixed 
and only the transform coefficients are quantized for the 
storage or transmission. 

In contrast, the use of singular value decomposition 
(SVD) in image compression is motivated by its 
relatively excellent energy compaction property. 
Moreover, the SVD transformation has the characteristic 
of optimal energy compaction in the least square sense, 
which makes it most useful for the bandwidth 
compression coding ignoring its computational 
complexity. The disadvantage of SVD transformation is 
due to its need for the recalculation for each subimage. 
However, SVD, unlike some widely used spectral 
algorithms in signal processing such as DFT, DCT and 
DWT, has a boosted performance for the spikes and 
abrupt jumps of the input signals, and can be applied to 
heterogeneous and M-dimensional vectors. The SVD is 
often considered as the most potential candidate for 
transformation but is seldom used in practical 
applications. The singular vectors in SVD are image 
dependent, and must be, therefore, coded along the 
associated singular values. To exploit the optimal energy 
compaction properties of the SVD, most of the effort in 
designing a more efficient SVD coder was put into the 

effective coding of singular values and singular vectors as 
well as the reduction of computational cost.  

2   SVD and Video Compression 

Images are nothing but two-dimensional matrices from 
the mathematical point view. Moreover, SVD takes an 
image in a rectangular m×n matrix A format and 
calculates three matrices of U, S, and V where U and V 
are unitary matrices with dimensions of m×m and n×n, 
and S is a diagonal m×n matrix (the same dimensions as 
matrix A), respectively. 
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Calculating the SVD consists of finding the eigenvalues 
and eigenvectors of ATA. The eigenvectors of ATA make 
up the columns of V (i.e. vi) and the eigenvectors of AAT

make up the columns of U (i.e. ui). The eigenvalues of 
ATA or AAT are the squares of the singular values for A. 
The singular values are the diagonal entries of the S 
matrix and are arranged in descending order. The singular 
values are always real numbers and if the matrix A is a 
real matrix, then U and V are also real. In order to 
calculate the eigenvalues of matrix A, it is required to 
solve the characteristic polynomials of: 

det(ATA - λi.I) = 0 (i = 0, … , n)  (1)

where I is an n×n identity matrix, λ1 … λn are the 
eigenvalues and 0 is zero vector of n×1 dimension. Then, 
the columns of eigenvectors V can be computed by 
solving the following characteristics equations: 

(ATA - λi.I).vi = 0 (i = 0, … , r)  (2) 

The columns of the eigenvector U can be found by: 
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The singular value δi is equal to the square root of the 
descending ordered eigenvalues, λi, of ATA and, 
therefore, organized in descending ordered of magnitude 
δ1 >δ2 >…> δr >δr+1 = …= δn =0. Thus, the result of the 
transform in terms of singular value matrix is given by:  

S = UTAV
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and the SVD representation of the block A is:  

A = USVT

U and V are orthogonal matrices and S is a diagonal 
matrix with the singular values along the main diagonal 
with rank r. The image block A can also be written as the 
column vectors of eigenvalues by:  
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3   Truncated SVD 

Singular value decomposition matrix S with rank r has 
very heavy computational burden imposing a major 
drawback in practical applications such as image and 
video signal processing for real time multimedia 
communications, therefore, to reduce this burden one 
possibility is to approximate this transformation by 
quantization and/or truncation of the singular values by 
parameter k < r.  
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So, the approximated version of equation (3) can be 
represented by:  
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Hence, the approximation error matrix EK is dependent 
on the performance accuracy of the quantization and/or 
truncation by parameter k, which can be described by:  

^

k AAE −=      (5) 

And the second norm of approximation error is calculated 
by: 
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    (6) 

The range of 19 to 21 percent SVD matrix rank was 
determined to enable a graceful non-deteriorated 
reconstructable video, while no significant visual 
improvement was observed beyond 21 percent. To adopt 
the best image quality for the Truncated Singular Value 
Decomposition (TSVD) and benefit from the maximum 
compression, that is, the lowest achievable bit rate, 
meanwhile keeping the mean square error relatively 
minimum, the TSVD algorithm was set to 21 percent of 
original rank. 

4   ATSVD Video Encoder 

The performance of SVD in terms of transformation 
speed ultimately has an impact on the encoder’s
processing time and the output bitrate of encoded 
sequence of images. This performance is very much 
dependent on the size of the image and the chosen 
operation rank for the singular value decomposition 
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matrix. The larger the image size, the longer processing 
time the SVD transformation coding takes. So, two 
phases were realized in developing our final proposed 
algorithm (i.e. ATSVD). Firstly, by applying the TSVD 
on full image size, we need to verify its capability on 
bitrate reduction and maintenance of video quality. The 
development of Adaptive Truncated Singular Value 
Decomposition (ATSVD) emerged by noticing the 
problem with the use of SVD in terms long processing 
time associated with its compression rate. As mentioned 
earlier, truncation of SVD matrix to 21 percent of its 
original rank has an acceptable outcome in terms of video 
quality and achieving a lower output bitrate but not for 
the processing time. The significant of this investigation 
is that the acquired percentage value for truncated matrix 
rank is valid for all image sequences regardless of their 
sizes. Secondly, applying ATSVD on smaller blocks of 
image reduces the processing time and the bitrate even 
further while maintaining all other beneficial aspects of 
TSVD intact. This is because smaller blocks may 
generally contain less luminance variation, that is, the 
standard deviation of this variation is very narrow; 
therefore, the rank of SVD in transforming the smaller 
sized blocks can shrink even further. This is not a trade-
off situation and in fact is necessary for obtaining a good 
rate of compression. Therefore, in order to adopt into the 
potential variation range of truncation values for each 
block, the first two blocks were set to the upper limit of 
21 percent of SVD original rank. To determine the 
optimum truncation rank for the rest of the blocks 
containing different features, the SVD truncation values 
were adaptively obtained based on applying a second 
order autoregressive function AR(2) to the resulting error 
functions (e.g. mean square error, mean absolute error, 
mean error, etc.). These error measurements are obtained 
from the encoded and original block mismatches for the 
two previously transformed neighboring blocks. In 
ATSVD algorithm, the coefficients of AR(2) terms were 
empirically determined and set to 0.62 and 0.38 for the 
closest and second closest neighboring blocks to the 
current block, respectively. The chosen coefficient values 
were fine tuned on the basis of the correlation between 
the further neighboring blocks are less influential than the 
nearer neighboring blocks. Longer order of 
autoregressive function can be employed in this 
procedure for more possible precision in achieving better 
image quality at the cost of processing time increase. But 
as one of our primary objective to win over any increase 
in processing delay, the second order autoregressive 
function was adopted in here. AR process can be 
described by: 
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A second order AR is chosen in ATSVD algorithm (i.e. p 
� ��� �1 ��� �2 are the empirically determined 
coefficients as 0.62 and 0.38, respectively. Z(n-i) is the 
error values obtained as a result of mismatch between the 
original block value and the block transformed by the 
TSVD. a(n) is an independent shock value which was set 
to zero for this algorithm.  

5   Experimental Results and Discussion 

Our proposed ATSVD algorithm was applied on our five 
test sequences and the results were compared with SVD 
and DCT. The results for different block sizes of 8 and 16 
are tabulated in I and II, respectively. In addition to the 
five test video sequences (of Independent I-frames only) 
the algorithm was tested on a number of other video 
sequences with different frame sizes to verify whether or 
not the results are consistence for any image dimension. 
Only one video with 320×240 frame size is shown in 
Figure 1 due to space constraint. It is worth to note that 
for some cases the rank of 19 percent produces the 
original frame with no noticeable visual degradation 
subjectively for those videos (which is even less than the 
rank of 21).  

Examining the table entries reveals that ATSVD has a 
better performance for the smaller block sizes in terms of 
low processing time (PT) and low bitrate. The loss of 
around 1 or 2 dB on PSNR in comparison to gain in 
shorter processing time and higher compression rate in 
regard to SVD and DCT is negligible. The loss in PSNR 
value and gain in computation complexity are due to 
adaptive rank truncation of the singular value 
decomposition matrix. In achieving to produce a lower 
bitrate for video source coders by the deployment of 
ATSVD, more number of video streams can now be 
multiplexed per channel. In fact, the result signifies that 
for the same allocated bandwidth, 2 or 3 additional video 
streams can now be accommodated with the utilization of 
ATSVD. Hence, fewer channels for multimedia streams 
are required, that is, the number of call connections per 
channel is increased. This is noticeable for high-speed 
network such as ATM where the gain of the ATM 
statistical multiplexer is increased. The performance of 
statistical multiplexing gain can also be evaluated based 
on the buffer size and queuing delay where a larger buffer 
size implies to a larger service delay for the individual 
quantities of traffic (i.e. cells for ATM network), which 
in turn implies to a smaller statistical multiplexing gain. 
Now, for the fixed multiplexing buffer size and the same 
number of traffic sources, the statistical multiplexing gain 
would be greater for the sources with a lower output 
bitrate than the otherwise, and that is what has been 
achieved in here. 
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Table I 
8×8 Average per 

frame 
Lecture Icehouse Ronin Indiana 

Jones 
Speed 

Bitrate  (KB) 5.614 5.774 5.655 5.875 5.8592 
PSNR 28.47 30.63 30.78 32.18 31.82 
PT  (%) 100 100 100 100 100 

DCT 

Total Size (KB) 449.12 461.95 452.40 470.06 468.74 
Bitrate/f  (KB) 3.563 3.845 3.761 3.893 3.852 
PSNR 29.83 31.87 31.60 32.74 31.96 
PT  (%) 201 204 203 205 204 

SVD 

Total Size (KB) 285.09 307.56 300.84 311.47 308.19 
Bitrate/f  (KB) 1.436 1.491 1.459 1.512 1.508 
PSNR 28.02 29.54 29.22 30.84 30.18 
PT  (%) 95 100 101 101 102 

ATSVD 

Total Size (KB) 114.90 119.24 118.71 120.97 120.64 

Table II 
16×16 Average per 

frame 
Lecture Icehouse Ronin Indiana 

Jones 
Speed 

Bitrate  (KB) 5.428 5.517 5.371 5.655 5.559 
PSNR 28.88 31.10 30.97 32.89 32.15 
PT  (%) 100 100 100 100 100 

DCT 

Total Size (KB) 434.24 441.36 429.68 452.40 444.72 
Bitrate/f  (KB) 3.714 4.079 4.019 4.176 4.007 
PSNR 29.01 31.53 31.98 33.15 32.87 
PT  (%) 441 440 447 446 449 

SVD 

Total Size (KB) 297.11 326.33 321.50 334.08 320.52 
Bitrate/f  (KB) 1.732 1.784 1.804 1.926 1.878 
PSNR 28.67 29.81 29.63 30.95 30.40 
PT  (%) 100 107 104 109 105 

ATSVD 

Total Size (KB) 138.57 142.70 144.33 154.07 150.21 

Figure 1 

Original frame Indiana        SVD with rank 2% 

SVD with rank 5% 

   
SVD with rank 15%    SVD with the 21% 

ATSVD with adaptive rank AR(2)
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6   Conclusion 

The reduction of output bitrate of video source (I-frames) 
and consequently the increase of call connections per 
communication channel were the sole aim of this 
experiment presented in this paper. Moreover, in reducing 
the bitrate, the SVD transform coding as an attractive 
alternative to the DCT coding was investigated. However, 
the required processing time and high computational 
complexity have a crucial impact on the selection of 
transform coding method for any video encoder. To 
utilize the high compression capability of the SVD 
transformation while diminishing the processing delay in 
consequence of the SVD deployment, a new algorithm 
called ATSVD was introduced. In our proposed 
algorithm, the SVD was truncated adaptively based on 
the second order autoregressive function with the upper 
limit was set to 21 percent of the original SVD rank of 
the image dimension. The range of 19 to 21 percent SVD 
matrix rank was determined to enable a graceful non-
deteriorated reconstructable video, while no significant 
visual improvement was observed beyond 21 percent. 
The significant of this investigation is that the acquired 
percentage value for truncated matrix rank is valid for all 
image sequences regardless of their sizes. 
As a result, further errors were introduced due to 
truncation of the SVD matrix rank besides the losses 
already imposed by the deployment of the SVD lossy 
compression process, however, objectively the difference 
in the PSNR measurement values between this method 
and other methods is negligible. Also, these errors are not 
subjectively noticeable in the decoded video. More 
importantly, the bitrate of video source is reduced by the 
incorporation of ATSVD into video coders, and 
consequently, the processing time for real-time 
multimedia applications over the high-speed network has 
been improved.  
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