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Abstract
Image processing has traditionally relied on improving images by estimation of the psf and then compensating
the image using computer post processing techniques. In reality much of the distortion can be traced to phase
aberrations caused by imperfections in the instrument optics. Modern technology means that these aberrations
can be compensated, but the problem of estimating the aberration remains. In this paper we explain a new way of
estimating the phase aberration from two defocused measurements of the instrument aperture.
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1 Introduction

The fundamental limit in the resolution of an optical
system is inversely proportional to the diameter of the
aperture of the optical system. However, imperfections
in the optical system, or imaging through a turbulent
media (for example, the earth’s atmosphere), cause
blurring of the images. In image processing, this
is commonly modelled by a linear space invariant
system, whereby a point-spread-function (PSF) may
be defined. In optics, it is more useful to define the
blurring in terms of phase errors in the aperture plane
of the optical system, since these show how they can be
corrected using deformable optics [1]. Figure 1 shows
an example of the effect of wavefront aberrations on
the PSF of an optical system.

Although aberrations of the wavefront phase are the
most significant cause of distorted images, it is not
possble with the current technology to measure the
phase aberrations. Instead wavefront sensors work
by inferring the phase indirectly from its effects on
intensity measurements. The simplest way to transform
phase distortions into measurable intensity distortions
is to allow the wavefront to propagate as illustrated in
figure 2. As is apparent from the figure, the further
the wavefront is allowed to propagate the larger the
measurable intensity fluctuations that are caused by the
phase aberration. In practice, a lens (or mirror) is used
to provide the same effective propagation distance
within the confines of an instrument.

As shown in figure 2, increasing the propagation dis-
tance also increases the non-linearity of the relationship
between the phase and the measured intensities. In
the limit when the wavefront is propagated to infinity
(or in the case of an instrument to the focal plane) the
light propagation needs to be described using Fourier
optics. However, provided the wavefront propagation

Figure 1: The diffraction limited PSF is shown on
the upper left, and the aberrated PSF is shown to its
right, with its corresponding wavefront aberration on
the lower left. The lower right diagram illustrates the
situation frequently encountered in astronomical imag-
ing in the distortion of star light caused by atmospheric
turbulence.

distance is limited, then geometric optics may be em-
ployed to describe the relationship between the phase
and the magnitude.

1.1 Geometric optics

The key to geometric optics is the ability to assume
that light propagates in a direction perpendicular to the
wavefront. Figure 3 shows the basis of this model. For
a given propagation distance, the light emanating from
a point in the aperture is displaced in the image plane
by a distance proportional to the slope of the wavefront.
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Figure 2: Simulated image showing intensity distribu-
tions of an aperture at (clockwise from top left) the
aperture plane, and propagated to 30km, 300km and
70km. Note that the images have been rescaled for
presentation purposes.

It is this linear relationship that is used as a basis for
wavefront sensing.
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Figure 3: Geometric optics model for the propagation
of light.

However, a problem arises when the light is allowed to
propagate too large a distance, because in this case light
rays from different parts of the aperture may cross over
before reaching the measurement plane. In this case it
is no longer possible to unambigously relate the light
measured in the image to a location in the aperture.
Not allowing the light to propagate to the focal plane
is however at a cost in sensitivity as discussed in [2].

The simplest wavefront sensing device consists of two
measurement planes each symmetrically distributed
around the focal plane of the instrument. This data has
traditionally been used to formulate an estimate of the
aberration curvature [3], but we show how it is more

appropriate to estimate the slope of the aberration.
Section 2 compares these two approaches, and
discusses how we can estimate the phase aberration
from the slopes. Section 4 shows experimental results
from this technique.

2 Interpretation of measurement data

A converging lens has the effect of causing light to con-
centrate evenly as the wavefront propagates. According
to the geometric optics model the image taken at the
measurement plane between the aperture and the focal
plane (Plane A in figure 4) would thus be identical to
the aperture, except that it is smaller and brighter.

Geometric optics also predicts that after having passed
through a focal point the light would again start to
spread out. At the second measurement plane on the
other side of focus (Plane B in figure 4) one would
expect to see another image of the aperture, except
that this time it would both be enlarged and inverted
from figure 4. In the absence of a phase aberration,
the measurements at planes A and B planes would be
identical.

The difference between estimating the curvature and
the slopes can be seen from figure 4 which also shows
the effect of a simple defocus in the aperture. The
wavefront aberration can be written mathematically as

W � x � y � �
k
4

� x2 � y2 � � x2 � y2 � r2 (1)

where x and y are spatial coordinates in the plane trans-
verse to the direction of propagation, k a constant repre-
senting the curvature, and r is the radius of the aperture.

The slope in the x and y directions is then

Wx � x � y � �
k
2

x � Wy � x � y � �
k
2

y (2)

and the curvature is equal to

∇2W � x � y � � Wxx � x � y � � Wyy � x � y � � k (3)

2.1 Estimating curvature

A direct curvature estimate is made by differencing two
measurements in the two planes as shown in figure 5.
A negative curvature at point P1 in the figure causes the
corresponding point at plane A to be brighter than B.
The positive curvature at P2 has the opposite effect. Es-
sentially a local curvature in the wavefront will cause a
dimming on one measurement plane and a brightening
on the other.

Mathematically this is equal to
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Figure 4: Comparison of an unaberrated wavefront
(left) with a defocus (right). The “circles” represent
intensity distribution in measurement planes coming
out of the page.
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Figure 5: Detection of a hypothetical wavefront with
local defocussing aberrations.

∇2W �
f r
l

� � � f � l
l

�
IA � r � � IB � � r �

2I � (4)

� � f � l
l

�
IA � r � � IB � � r �
IA � r � � IB � � r � �

(5)

A complete analysis of this approach is beyond the
scope of this paper, but can be found in[4]. The major
deficiency in most analyses is that they neglect the
finite nature of the instrument aperture, the effects of
which are best shown graphically.

Figure 6 shows a one-dimensional defocus example.
When the signals at the two measurement planes are
differenced, the difference between intensities near the
centre of the aperture indicates a constant curvature as
expected, but at the edge the signal is incorrect. Inte-
grating the signal two times to produce the wavefront
produces a quantity that exactly matches neither the

expected defocus nor the wavefront slope, as shown in
figure 6.

x

x

x

Signal (Curvature estimate) = W (x) =xx I - I1 2

Wavefront estimate = W(x) = W (x) dxx

Slope estimate = W (x) = s(x) dxx

-

x

-

x

Figure 6: Estimation of a wavefront from curvature
sensing data.

A further problem that occurs is when there is an over-
all tilt in the wavefront as shown in figure 7. Since the
true wavefront has no curvature, the expected curvature
signal is zero. Although this is the case in the centre of
the aperture, it is not the case at the edges. It is clear
that the problem with this interpretation of the measure-
ment data is that it fails to model the edge effects, and
for this reason a practical curvature sensing instrument
measures the wavefront slope separately.

Plane A

Plane B

Difference

Figure 7: A wavefront that is only tilted has 0 curva-
ture, but still produces an edge signal.

2.2 Estimating slopes

The measurement data can, however also be interpreted
in terms of slopes [5]. The simplified 1D version of
the propagation of light is shown in figure 8 where we
have traced rays from points in the aperture using the
assumption of geometric optics. Since the rays do not
cross, if we integrate the light between the two rays P1
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Figure 8: Derivation of the wavefront slope, using the
same data from figure 3.

and P2 at planes A and B (grayed region), the result
must be equal.

This conservation of light during propagation may be
expressed mathematically as,

CIA � xA � � � xA

� ∞
IA � x � dx � � xB

� ∞
IB � x � dx � CIB � xB � (6)

where IA � x � and IB � x � are the intensity distributions
across planes A and B respectively.

The wavefront slope corresponding to ray P2 is thus
equal to ∆x

∆z , where ∆x � xB
� xA and ∆z is the distance

between the two planes.

Equation (6), is equivalent to histogram specification,
a commonly used image processing technique and in-
deed if the intensity distributions are normalised to 1
they can be considered to be the probability distribu-
tions for photon arrival.

The wavefront slope across the entire aperture can thus
be found by first converting the intensity distributions
in the measurement planes to cumulative density func-
tions, as shown in figure 9a. Histogram specification
can then be used to estimate the wavefront slopes di-
rectly. The slopes can be differentiated to estimate the
curvature or integrated to find the phase aberration as
shown in figure 9a.

2.3 Comparison of the curvature and
slope analyses

It is apparent from figure 9b that while geometric optics
holds slope estimation produces an exact estimate of
the curvature and overall phase for a pure defocus. This
is in contrast to the results obtained from estimating the
curvature directly. Similarly, when the phase aberration
is a pure tilt, a direct estimation of the slope removes
the edge effects that are apparent when estimating the
curvature.

To see why this difference arises, it is worthwhile to
consider the fundamental assumptions that underpin
the two approaches. When estimating the curvature

directly, it is implicitly assumed that the effect of
the wavefront aberration is to move light from one
measurement plane to another, whereas the slope
estimation assumes that light is being displaced within
a measurement plane.

In order to clarify this assumption implicit in the cur-
vature sensor, consider the two stage process used to
estimate slopes. The data is first differenced, and then
integrated. Since these processes are linear, the order
can be reversed to obtain figure 9b. Whereas slope
estimation matches the two distributions along the ab-
scissa, curvature estimation does it along the ordinate,
resulting in erroneous results at the boundaries.

3 2D wavefront reconstruction

Although the slope based interpretation produces supe-
rior results in one dimension, there is some difficulty in
generalising the problem to two dimensions. Because
the light movement is not resticted to one-direction the
radon transform must be employed to reduce the prob-
lem to a set of one-dimensional problems.

Figure 10 illustrates how the intensity data is first pro-
jected to form a one-dimensional intensity distribution.
Histogram specification is then performed to estimate
the line integral of the phase slopes taken along the
same lines as the intensity data was projected. Pro-
vided the intensity data is projected at several angles
it is possible to reconstruct the overall slope data us-
ing the same techniques that are employed in medical
imaging[6].
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Figure 10: Projection of an intensity distribution onto
the v-axis.

3.1 Basis function representation

A more convenient method for reconstruction relies
on the linearity of the Radon transform. The phase
aberrations are conveniently described using circular
basis functions, allowing us to describe a wavefront
as a weighted combination of known modes. The
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Figure 9: Comparison of the histogram specification process (a) with curvature sensing (b) in the estimation of
slopes.

most common choice for the modes is the Zernike
polynomials[7] since these relect the statistical
eigenfunctions of atmospheric turbulence [8]. Hence,

W � x � y � �
∞

∑
i � 1

αiZi � x � y � (7)

where αi represents the coefficient for each Zernike
mode Zi � x � y � .

Since differentiation is a linear process, if the phase
aberration is a sum of Zernike polynomials, then the
slopes estimated at each of the projections are propor-
tional to the sum of derivatives of the Zernike polyno-
mials. It is thus possible to estimate the coefficients
of the Zernike polynomials using a system of linear
equations, and solve for the coefficient of equation (7)
using matrix techniques.

4 Demonstration of sensor

4.1 Experimental setup

Figure 11 shows the physical setup used for acquiring
two out-of-focus images. A 633nm filtered and colli-
mated laser beam is split into two identical paths. Two
symmetrically out-of-focus intensity distributions are
then measured at each path simultaneously.

The images obtained are shown in figure 12. The pa-
rameters for this setup are as shown in figure 11.
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Figure 11: Experimental setup demonstrating the prin-
ciples of wavefront sensing.

4.2 Recovery of wavefront

For a pair of intensity distributions, 8 different projec-
tions, with angles equally spaced between 0

�

and 180
�

,
were histogram specified. The operations of differenti-
ation (taking the wavefront slope), radon transform and
vector stacking are linear, so a matrix (H) representing
the forward problem may be calculated. The inverse of
this process (H†) may then be stored, and used to re-
cover the wavefront during operation of the wavefront
sensor. The first 14 Zernike modes were recovered.
This should adequately model the expected aberrations.

In our setup, data from the experiment was processed
offline in Matlab. After resampling the images to match
pixel sizes, a data vector is formed from 8 projections
and histogram specifications. The Zernike coefficients
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Figure 12: Intensity distributions measured in the post-
focal plane (left), and pre-focal plane (right). The
images have been resampled and normalised.

of the wavefront were then directly obtained from α �

H†d.

Figure 13 shows the coefficients of the recovered wave-
front. The reconstructed wavefront, with tip and tilt
terms removed for presentation purposes, is shown in
figure 14. The terms Z2, Z3 and Z4, representing the tip,
tilt, and defocus terms respectively, are useful for cali-
brating an optical setup to reduce systematic wavefront
errors. The higher order terms consisting of aberrations
such as astigmatism and coma decay towards zero as
expected.
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Figure 13: Estimated coefficients using the data from
figure 12.

5 Conclusion

This paper outlined the wavefront reconstruction al-
gorithms of the curvature and slope based wavefront
sensor. We provided an intuitive explanation of the
operation of the slope sensor, and showed how its uni-
fied treatment of intensity data is superior to that of the
curvature.

An experimental demonstration of the slope based sen-
sor with results is also presented to confirm its oper-
ation. The aberrations observed are due to errors in
the optical alignment. This ability to reconstruct these
errors provides a useful calibration tool.
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Figure 14: Wavefront reconstructed from the estimated
coefficients of figure 13 with tip and tilt terms removed.

The slope based sensor successfully operates in
open-loop, in contrast to the traditional curvature
sensor, which requires a closed-loop operation under
moderately severe optical aberrations. Although
there is more processing required for the geometric
wavefront sensor, this does not preclude real-time
operation. Overall, the demonstration system has
shown potential for implementation in a real-time
adaptive optics system.
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