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Abstract
The relative effects of spectral amplitude and phase errors on reconstructed images is studied in terms of
the expected mean-square-error in the image. An appropriate mean-square-error appears to be that between
reconstructed and original images that are scaled to have the same energy. Such an error metric appears to reflect
the overall perceived quality of the images. Approximate relationships between spectral amplitude and phase
errors that give rise to the same image mean-square-error are derived. Simulations are used to illustrate these
relationships. The relationship to phase dominance is discussed.
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1 Introduction

In many imaging, remote sensing and image processing
problems, the Fourier transform, or spectrum, of an
image, rather than the image itself, is measured. Since
the spectrum is complex, both the amplitude and the
phase are needed in order to calculate the image by
inverse Fourier transformation. However, in a number
of applications one measures the amplitude, but not the
phase, of the transform of an image. This can arise
if a wavefield is measured after propagation through a
random medium (that introduces large phase errors) or
if the wavelength of the radiation is too small for co-
herent detection. “Phase retrieval” refers to the process
of reconstructing an image, or equivalently the Fourier
phase, from measurements of the Fourier amplitude [1,
2, 3]. Phase retrieval is very important in a number of
technical fields such as astronomy, medical imaging,
and biology [3, 4]. Phase retrieval algorithms seek to
reconstruct an image from measurement of its spectral
amplitude by incorporating a priori information or con-
straints on the allowable images. The characteristics
of phase problems and development of improved algo-
rithms is an active area of research.

A characteristic of Fourier imaging that is related
to phase retrieval is the phenomenon of “phase
dominance” [5, 6]. Phase dominance refers to the
general observation that loss of the spectral phase
information tends to lead to a less recognisable
image than does loss of the spectral amplitude

information. This implies that the phase contains more
information than the magnitude. This characteristic
of image spectra has been known for some time
in the fields of crystallography, image processing,
visual perception and holography, as well as in signal
coding and speech [5, 7, 8]. It is also of relevance
in coding, compression and phase-only holograms
(kinoforms) [9]. Although this is a well known
characteristic, most studies of phase dominance have
so far been based only on a qualitative and subjective
analysis. Phase dominance is consistent with the
observation that image reconstruction from the Fourier
phase is easier than reconstruction from the Fourier
amplitude.

An example illustrating phase dominance is shown in
Fig. 1. Two original images are shown in a and b. Im-
age c is calculated from the spectral amplitude of image
b and the spectral phase of the image a, and image d is
calculated from the spectral amplitude of image a and
the spectral phase of image b. Inspection of images
c and d shows that they both strongly resemble the
images from which their spectral phase is taken.

In this paper we examine the effects that errors in the
spectral amplitude and phase have on the interpretabil-
ity of images, and appropriate error metrics. The results
are of relevance to phase retrieval, visual perception
and coding.
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Figure 1: Illustration of phase dominance. a and b:
original images. c and d: composite images calculated
using the spectral phase of a and b, respectively.

2 Theory – Small Amplitude Errors

Consider an image f (x,y), where (x,y) is position in
image space. The Fourier transform F(u,v) of the im-
age is given by

F(u,v) =
∫ ∞

−∞

∫ ∞

−∞
f (x,y) exp(i2π(ux+ vy))dxdy, (1)

where (u,v) is position in Fourier space. The Fourier
transform is decomposed into the amplitude |F(u,v)|
and phase φ(u,v), where

F(u,v) = |F(u,v)| exp(iφ(u,v)). (2)

In order to study the importance of the spectral ampli-
tude and phase, we consider an image denoted f̂ (x,y)
that is reconstructed after errors have been added to the
Fourier amplitude and/or phase. The effect on the im-
age is assessed by calculating the relative mean-square-
error (mse), e2, between the reconstructed and original
images, i.e.

e2 =
∫∫

[ f̂ (x,y)− f (x,y)]2 dxdy∫∫
[ f (x,y)]2 dxdy

. (3)

The Fourier transform of f̂ (x,y) is denoted by F̂(u,v)
and the phase of F̂(u,v) is denoted by φ̂(u,v). Hence
F̂(u,v) represents F(u,v) after the addition of spec-
tral amplitude or phase errors. The dependence of the

transform quantities on u and v is suppressed in the
following where no confusion arises. The error in the
transform is denoted by ∆F = F̂ − F , and the errors
∆|F| and ∆φ in the amplitude and phase, respectively,
are given by

∆|F| = |F̂|− |F| (4)

∆φ = φ̂ −φ . (5)

We define the normalised variance of the amplitude
errors by

σ2
a =

〈∆|F |2〉
〈|F |2〉 . (6)

Assuming that the errors ∆|F| and ∆φ are independent
and zero-mean, we have shown that the expected mse
〈e2〉 is given by [10]

〈e2〉 = 2〈1− cos(∆φ)〉+ σ 2
a , (7)

where 〈·〉 denotes the ensemble average. Note that the
mse is the sum of two terms, one which depends only
on the phase errors and the other which depends only
on the amplitude errors.

For phase errors ∆φ uniformly distributed between −A
and A radians, the standard deviation, denoted σφ , is
σφ = A/

√
3, and Eq. 7 can be evaluated giving [10]

〈e2〉 = 2− 2sin(
√

3σφ )√
3σφ

+ σ2
a . (8)

The uniform distribution is valid only for A < π , or
σφ < π/

√
3 ≈ 104 ◦, so we restrict σφ to this range.

Normally distributed errors were considered in [10] but
are not discussed here. Plots of the mse versus the
standard deviation of the amplitude and phase errors
are shown in Fig. 2. These results can be used to quan-
titate the relative effects of amplitude and phase errors
by deriving a relationship between σa and σφ such that
the corresponding values give the same mse. This rela-
tionship is shown in Fig. 3.

3 Results – Small Amplitude Errors

Uniformly distributed amplitude and phase errors were
added to the transforms of a number of images and the
resulting images reconstructed. The pixel values were
first shifted so that the average value over the image is
zero, since the addition of phase errors to the otherwise
very large value of the Fourier transform at zero spatial
frequency (generally the case for images) causes un-
reasonably large and erratic errors in the images. The
images were then scaled to the range 0 (black) to 255
(white) for display. The mses of the reconstructed im-
ages were calculated and averaged over an ensemble
of noise signals. The average mses fitted the curves in
Fig. 2 essentially exactly.
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Figure 2: (a) The mses 〈e2〉 (−) and 〈e2
s 〉 (−−) versus

σa. (b) 〈e2〉 and 〈e2
s 〉 versus σφ .

Examples of reconstructed images are shown in Fig. 4.
The original image is shown in the top row. Each row in
the figure shows reconstructed images with a constant
mse, the mse increasing down the page with the values
given in the caption. The images in the left column
are constructed with spectral amplitude errors only, and
those in the right column with phase errors only. The
images in the center column are constructed using both
amplitude and phase errors such that each contributes
one half of the mse. Inspection of this figure shows a
number of interesting features. For small values of the
mse, although some distortion is present the images are
quite recognisable. The effects of the amplitude and
phase errors are similar although amplitude errors tend
to decrease the contrast more than do the phase errors,
and phase errors tend to introduce some structure not
present in the original image. These effects become
more pronounced as the mse increases. The bottom
row of the figure (e2 = 1.5) corresponds to σa = 1.2
for the left image and σφ = 82 ◦ for the right image.
These values correspond to almost random amplitudes
and phases, respectively. Although the image on the

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σφ(°)

σ
a

Figure 3: Relationship between amplitude error σa and
phase error σφ , for uniformly distributed errors, such
that the mses (〈e2〉 (−) and 〈e2

s 〉 (−−)) are equal.

left is better than that on the right, this is largely due to
a scaling effect as is described in the next section. The
image on the left is quite recognisable but the image on
the right is not. A mixture of large amplitude and phase
errors leads to a partially recognisable image (centre
image in bottom row).

4 Theory – Large Amplitude Errors

There are two effects that are not considered in the
above analysis, that become important when the am-
plitude errors are large.

The first effect is that since arbitrarily small values of
the amplitude |F | may occur, for any finite σa it is pos-
sible that ∆|F | < −|F| for some samples of the spec-
trum. In such a case |F̂ |< 0, which presents a problem
since an amplitude is a positive quantity. The effect in
the above analysis is that the sign of any negative |F̂ | is
changed and a phase error of π is introduced. In prac-
tice however, the measured amplitude would usually
saturate at zero and no phase error would be introduced.
Therefore, for large amplitude errors, the above anal-
ysis introduces some erroneous amplitude and phase
errors. The effect increases as σa increases since the
probability of negative amplitudes then increases.

The second effect can be seen by noting that 〈|F̂ |2〉 =
〈|F |2〉(1 + σ 2

a ). The quantity 〈|F |2〉 is a measure of
the energy in the image. Hence, for large values of σa
the energy in the reconstructed image is substantially
larger than the energy in the original image. This tends
to make the overall amplitude of the reconstructed im-
age larger than that of the original image. The mse
〈e2〉 is therefore due in part to the overall difference
in amplitude between the two images. In comparing
reconstructed and original images (both in terms of vi-
sual perception and in quantitative technical applica-
tions) the overall amplitude of the whole image tends
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Figure 4: Images reconstructed with a variety of
uniformly distributed amplitude and phase errors as
described in the text. The original image is shown in
the top row. The mse 〈e2〉 increases down the page
with values 0, 0.5, 1, 1.5. The different columns are
described in the text.

to be unimportant. The effect is that the relative mse
calculated by Eq. 3 overestimates the relevant error as
far as image interpretability is concerned.

The second effect is more easily dealt with and so is
discussed first. A more useful measure of the image
error is that calculated after the image(s) have been
scaled to have the same energy. We therefore define
the mse 〈e2

s 〉 as

e2
s =

∫∫
[α f̂ (x,y)− f (x,y)]2 dxdy∫∫

[ f (x,y)]2 dxdy
, (9)

where the subscript s refers to the error after scaling the
reconstructed image and

α2 =
1

1 + σ 2
a
. (10)

The error metric 〈e2
s 〉 is expected to better reflect the

interpretability of images than does 〈e2〉. Performing

the same analysis as in Section 2 allows 〈e2
s 〉 to be

calculated and put in the form

〈e2
s 〉 =

2√
1 + σ 2

a
〈1− cos(∆φ)〉+ 2

(
1− 1√

1 + σ 2
a

)

(11)

for comparison with Eq. 7. Equation 11 is not equal
to the sum of two terms which depend, respectively, on
only the amplitude and phase errors, as is the case in
Eq. 7. However, the first term in Eq. 11 is zero for no
phase errors (∆φ = 0) and the second term is zero for
no amplitude errors (σa = 0). The first term depends
on both ∆φ and σa, whereas the second term depends
only on σa. Note that 〈e2

s 〉 reduces to 〈e2〉 if σa = 0.

Referring to Eq. 7, the maximum value of 〈e2〉 is 4 for
phase errors only, but is unbounded for large amplitude
errors. On the other hand, Eq. 11 gives the same upper
bound for phase errors, but the mse is bounded at 2 for
large amplitude errors, reflecting the normalisation of
the reconstructed image. The mse is bounded by 4 if
both amplitude and phase errors are present, as can be
seen by writing Eq. 11 in the form

〈e2
s 〉 = 2

(
1− 〈cos(∆φ)〉√

1 + σ 2
a

)
. (12)

Evaluating 12 for uniformly distributed phase errors
gives

〈e2
s 〉 = 2− 2sin(

√
3σφ )

σφ
√

3(1 + σ 2
a )

. (13)

A plot of 〈e2
s 〉 versus σa for σφ = 0 is shown in

Fig. 2(a). Note that the curves are similar for small σa,
but that 〈e2

s 〉 is considerably smaller than 〈e2〉 for large
σa. A plot of 〈e2

s 〉 versus σφ for σa = 0 is identical
to that for 〈e2〉 (Fig. 2(b)). As described in Section
2, these results can be used to derive a relationship
between σa and σφ such that the reconstructed image
have the same 〈e2

s 〉. This relationship is shown in
Fig. 3. Inspection of the figure shows that for a fixed
σφ , a larger σa is required to obtain the same 〈e2

s 〉 than
is required to obtain the same 〈e2〉.

5 Results – Large Amplitude Errors

Reconstructed images were generated as described in
Section 3 and are shown in Fig. 5, but this time with
the images in a single row having the same 〈e2

s 〉, rather
than the same 〈e2〉 as in Fig. 4. Inspection of the figure
shows that the images in a single row, particularly for
the lower rows, are more similar in quality than they
are in Fig. 4, although the images in the left column
are slightly more recognisable than those in the right
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Figure 5: Images reconstructed with a variety of
uniformly distributed amplitude and phase errors as
described in the text. The original image is shown in
the top row. The mse 〈e2

s 〉 increases down the page
with values 0, 0.5, 1, 1.5. The different columns are
described in the text.

column. The images in Fig. 5 show that when the over-
all amplitude of the image is taken into account, the
difference between amplitude and phase errors for the
same mse is less pronounced.

The analysis in Section 4 and the results shown in Fig. 5
still suffer from the problem that large amplitude errors
will introduce some erroneous amplitude and phase er-
rors into the spectrum of the reconstructed image as
described in the second paragraph of Section 4. The
effect of this is that images in the lower left region of
Fig. 5 will generally contain smaller amplitude errors
and larger phase errors, overall, than is specified by the
analysis and the simulations. As described before, a
more realistic model is to set any negative amplitude
to zero. Derivation of an analytical expression for the
mse for this model is difficult, and we investigate this
case by simulation. Uniformly distributed amplitude

Figure 6: Images reconstructed with a variety of
uniformly distributed amplitude and phase errors as
described in the text. The original image is shown in
the top row. The mse 〈e2

z 〉 increases down the page
with values 0, 0.5, 1, 1.5. The different columns are
described in the text.

and phase errors were added to the spectrum of an im-
age and any negative amplitudes were set to zero. The
energy of the reconstructed image was calculated and
the image scaled to the energy of the original image.
The mse between the reconstructed and original image,
denoted by 〈e2

z 〉 where the subscript z denotes zeroing
of the negative amplitudes, was calculated. The values
of σa and/or σφ were adjusted to give the desired val-
ues of 〈e2

z 〉 (as listed in the caption to Fig. 6) and the
resulting images are displayed in the rows in Fig. 6. In-
spection of the figure shows that the images in a single
row, particularly for the lower rows, are of even more
similar quality than is the case in Fig. 5. In particular,
all images in the bottom row are essentially equally
uninterpretable. Since this is the most realistic model
of the effects of spectral amplitude and phase errors,
we conclude that for a given 〈e2

z 〉, amplitude and phase
errors have similar effects.

Palmerston North, November 2003 179



6 Conclusions

The relative importance of spectral amplitude and
phase errors on image reconstruction from the Fourier
transform is of relevance to a number of technical
areas including remote sensing, compression and
visual perception. The relative effects of amplitude
and phase errors can be evaluated by considering
errors that give identical mean-square-errors in a
reconstructed image. However, the results depends on
how the mean-square-error is defined if the amplitude
errors are not small. An appropriate approach appears
to be to calculate the mean-square-error based on
reconstructed images that are scaled by energy to the
original image.

Scaling tends not to affect the contrast in the image,
which is one of the primary attributes to which the
visual system responds. Therefore, a mean–square-
error minimised over contrast–independent scaling
would appear to be an appropriate metric to compare
images in terms of visual interpretability. This is borne
out by the images in the rows of Figs. 5 and 6 having
similar visual quality, i.e. the energy–normalised
metrics 〈e2

s 〉 and 〈e2
z 〉 appear to track, in general terms,

the perceived quality of the images. Of course when
one considers specific image features, such as edges,
to which the visual system is particularly sensitive, the
mse is not a particularly appropriate metric.

The error 〈e2
s 〉 allows an analytical expression for the

image error in terms of the amplitude and phase errors
to be derived if the effect of saturation of negative am-
plitudes is ignored. Saturation of negative amplitudes
is important for larger amplitude errors however, and
the relative effects of spectral amplitude and phase er-
rors are evaluated by simulations (Fig. 6). The results
indicate that for large errors, both amplitude and phase
errors destroy the interpretability of reconstructed im-
ages. The effects of small errors and are obviously less
severe, and the effects of amplitude and phase errors
appear to be similar although further study is needed in
this case.

The similarly poor quality of the images in the bottom
row of Fig. 6 may appear to be at odds with phase
dominance. These images correspond to almost ran-
dom amplitudes (left) and almost random phase (right).
However phase dominance, in the usual sense as out-
lined in Section 1, is described in terms of two im-
ages. Replacing the phase of an image by the phase
of another image introduces very large phase errors.
However, replacing the spectral amplitude of an image
by that from another image (which has a similar over-
all distribution of spectral amplitudes, and a similar
distribution with spatial frequency) does not introduce
errors that are as severe as results from replacing the
amplitudes by random values.

There are still some interesting open questions on this
topic. One is, what are the more detailed effects of
more modest amplitude and phase errors? This could
be answered by a similar study with more finely re-
solved values of 〈e2

z 〉. Another is, what are the effects
if the amplitude errors are such that the resulting ampli-
tudes track the overall distribution of amplitudes with
spatial frequency as in the original image?
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