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ABSTRACT 

At least 32 joint related degrees of freedom need to be estimated to reliably track the human body in 3D. The particle filter is robust to 
distracting clutter by maintaining multiple hypotheses for each of these joint angles. Real-time tracking is difficult however with the 
computational overhead of such a large search space. This paper optimises this search space utilising feedback from a Continuous
Human Movement Recognition (CHMR) system and improves the robustness and efficiency of each particle calculation using a novel 
body model. The joint angles are estimated for the next frame using a Particle filter with forward smoothing. A new paradigm enables 
the temporal segmentation of continuous motion into dynemes. Using HMM, the CHMR system attempts to infer the human movement 
skill that could have produced the observed sequence of dynemes. Hundreds of movement skills, from gait to saltos, are successfully 
tracked and recognised. 

1 Richard Green is with the Human Interface Technology Lab, University of Canterbury, Christchurch, New Zealand. He 
was with the School of Electrical and Information Engineering, The University of Sydney, NSW 2006, Australia,  (phone: 
+64 3 3642398; fax: +64 3 3642095; e-mail: richard.green@canterbury.ac.nz).

1.  INTRODUCTION 

Research into tracking, recognising and understanding full 
body human motion has so far been mainly limited to gait or 
frontal posing [16]. This paper describes a framework for 
tracking, recognising and quantifying full body human 
motion, free of joint markers, set-up procedures and hand-
initialisation, over a larger range of motion than previously 
attempted by considering hundreds of different movement 
skills [7].  

Robust tracking of the full human body in 3D is enhanced by 
predicting the joint angles for the next frame to stabilise the 
tracking. This calculation of joint angles, for the next frame, 
was cast as an estimation problem, which was solved using a 
Particle filter. 

The Particle Filter was developed to address the problem of 
tracking contour outlines through heavy image clutter 
[11,12]. The filter’s output at a given time-step, rather than 
being a single estimate of position and covariance as in a 
Kalman filter, is an approximation of an entire probability 
distribution of likely joint angles. This allows the filter to 
maintain multiple hypotheses and thus be robust to 
distracting clutter. 

With about 32 degree of freedom (DOFs) to be determined 
for each frame, there is the potential of exponential 
complexity evaluating such a high dimensional search space. 
MacCormick [15] proposed Partitioned Sampling and 
Sullivan [22] proposed Layered Sampling to reduce the 
search space by partitioning it for more efficient particle 

filtering. Although Annealed Particle Filtering [3] is an even 
more general and robust solution, it struggles with efficiency 
which Deutscher [4] improves with Partitioned Annealed 
Particle Filtering. This paper optimises the huge search 
space related to calculating many particles for over 32 DOFs 
by utilising feedback from the CHMR system. A novel body 
model is also engaged to improve the robustness and 
efficiency of each calculation for the remaining particles. 

Recognising and quantifying human movement requires 
spatial segmentation followed by temporal segmentation 
(Fig. 1). The spatial segmentation is essentially a tracking 
process which determines a motion vector encapsulating a 
set of joint angles (and other biomechanical parameters) for 
each frame. The temporal segmentation is a CHMR system 
which attempts to infer the movement skill that could have 
produced the observed sequence of motion vectors. 

Fig. 1. Overview of segmentation of human motion. 

Where the tracking process utilises a body model and a 
kinematic model, the CHMR system draws on a dyneme-
model, skill-model, and a semantic-model (Fig. 5). Where 
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the tracking process stochastically enhances spatial 
segmentation with a particle filter, the CHMR system 
stochastically enhances temporal segmentation with a HMM. 
The tracking is further stabilised and optimised by feeding 
back information from the CHMR system (Fig. 1). 

2.  TRACKING 

Various approaches for tracking the whole body have been 
proposed in the image processing literature. They can be 
distinguished by the representation of the body as a stick 
figure, 2D contour or volumetric model and by their 
dimensionality being 2D or 3D. Joint angles are able to be 
more directly estimated by mapping human body models 
directly onto a given image. Volumetric 3D models have the 
advantage of being more generally valid with self occlusions 
more easily resolved. Most volumetric approaches model 
body parts using generalised cylinders [19] or super-
quadratics [17]. Some extract features [25] and others fit the 
projected model directly to the image [19]. 

2.1 Body Model 

Cylindrical, quadratic and ellipsoidal [9] body models of 
previous studies do not contour accurately to the body, thus 
decreasing tracking stability. To overcome this problem, in 
this research 3D clone-body-model regions are sized and 
texture mapped from each body part by extracting features 
during the initialisation phase [5]. This clone-body-model 
has a number of advantages over previous body models: 
• It allows for a larger variation of somatotype (from 

ectomorph to endomorph), gender (cylindrical trunks do 
not allow for breasts or pregnancy) and age (from baby 
to adult). 

• Exact sizing of clone-body-parts enables greater 
accuracy in tracking edges, rather than the nearest best 
fit of a cylinder. 

• Texture mapping of clone-body-parts increases region 
tracking and orientation accuracy over the many other 
models which assume a uniform color for each body 
part.  

• Region patterns, such as the ear, elbow and knee 
patterns, assist in accurately fixing orientation of clone-
body-parts. 

Joint DOF 
Neck (atlantoaxial) 3 

Shoulder 3* 
Clavicle 1* 

Vertebrae 3 
Hip 3* 

Elbow 1* 
Wrist 2* 
Knee 1* 
Ankle 2* 

* double for left and right 32 total 
Table 1. Degrees of freedom associated with each joint. 

The clone-body-model proposed in this paper consists of a 
set of clone-body-parts, connected by joints, similar to the 
representations proposed by Badler [1]. Clone-body-parts 
include the head, clavicle, trunk, upper arms, forearms, 
hands, thighs, calves and feet. Degrees of freedom are 
modeled for gross full body motion (Table 1). Degrees of 

freedom supporting finer resolution movements are not yet 
modeled, including the radioulnar (forearm rotation), 
interphalangeal (toe), metacarpophalangeal (finger) and 
carpometacarpal (thumb) joint motions.  
Each clone-body-part consists of a rigid spine with pixels 
radiating out (Figure 2). Each pixel represents a point on the 
surface of a clone-body-part. Associated with each pixel is: 
radius or thickness of the clone-body-part at that point; color 
as in hue, saturation and intensity; accuracy of the color and 
radius; and the elasticity inherent in the body part at that 
point. Although each point on a clone-body-part is defined 
by cylindrical coordinates, the radius varies in a cross 
section to exactly follow the contour of the body as shown in 
Figure 2. 

Fig. 2.  Clone-body-model consisting of clone-body-parts 
which have a cylindrical coordinate system of surface points 
b() and up to three DOF for each joint linking the clone-
body-parts. Each surface point is a vector b with cylindrical 
coordinates (d,θ,r), color (h,s,i), accuracy of radius (ar),
accuracy of color (ahsi), elasticity of radius (er).

Automated initialisation assumes only one person is walking 
upright in front of a static background initially with gait 
being a known movement model. Anthropometric data [18] 
is used as a Gaussian prior for initialising the clone-body-
part proportions with left-right symmetry of the body used as 
a stabilising guide from 50th percentile proportions. Such 
constraints on the relative size of clone-body-parts and on 
limits and neutral positions of joints help to stabilise 
initialisations.  Initially a low accuracy is set for each clone-
body-part with the accuracy increasing as structure from 
motion resolves the relative proportions. For example, a low 
color and high radius accuracy is initially set for pixels near 
the edge of a clone-body-part, high color and low radius 
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accuracy for other near side pixels and a low color and low 
radius accuracy is set for far side pixels. The ongoing 
temporal resolution following self occlusions enables 
increasing radius and color accuracy. Breathing, muscle 
flexion and other normal variations of body part radius are 
accounted for by the radius elasticity parameter. 

2.2 Kinematic Model 

The kinematic model tracking the position and orientation of 
a person relative to the camera, entails projecting 3D body 
model parts onto a 2D image with three chained 
homogeneous transformation matrices: 

               p (x, b ) = Ii (x, Ci (x, Bi (x, b )))                   (1) 

where x is a parameter vector calculated for optimum 
alignment of the projected model with the image, B is the 
Body frame of reference transformation, C is the Camera 
frame of reference transformation, I is the Image frame of 
reference transformation, b is a body-part surface point, p is 
a pixel in 2D frame of video. 

Joint angles are used to track the location and orientation of 
each body part, with the range of joint angles being 
constrained by limiting the degrees of freedom (DOF) 
associated with each joint. A simple motion model of 
constant angular velocity for joint angles is used in the 
kinematical model. Each DOF is constrained by anatomical 
joint-angle limits, body-part inter-penetration avoidance and 
joint-angle equilibrium positions modeled with Gaussian 
stabilisers around their equilibria. To stabilise tracking, the 
joint angles are estimated for the next frame. The calculation 
of joint angles, for the next frame, is cast as an estimation 
problem which is solved using a Particle filter 
(Condensation algorithm). 

2.3 Particle Filter 

The Particle Filter is a considerably simpler algorithm than 
the Kalman Filter. Moreover despite its use of random 
sampling, which is often thought to be computationally 
inefficient, the Particle Filter can run in real-time. This is 
because tracking over time maintains relatively tight 
distributions for shape at successive time steps and 
particularly so given the availability of accurate learned 
models of shape and motion from the human-movement-
recognition (CHMR) system. 

The particle filter has  
• three probability distributions in problem specification:  

1. Prior density p(x) for the state x 
� joint angles in previous 

frame  
2. Process density p(xt|xt-1)

� kinematic and body 
models 

3. Observation density p(z|x) 
      � image in previous frame 

• one probability distribution in the solution 
specification:  
1. State Density p(xt|Zt) � joint angles in next frame 

When tracking through background clutter or occlusion, a 
joint angle may have N alternate possible values (samples) s
with respective weights w, where prior density: 

p(x)  ≈  St-1 = {(s(n),w(n)), n=1..N} = a sample set 

For the next frame, a new sample is selected, śt = st-1 by 
finding the smallest i for which c(i) ≥ r, where c(i) = ∑tw(i) and 
r is a random number {0,1}. 

A joint angle, s
( )n

t in the next frame is predicted by sampling 

from the process density, p(xt|xt-1 = ś
( )n

t ) which encompasses 

the kinematic model, body model and cost function 
minimisation. In this prediction step both edge and region 
information are used. The edge information is used to 
directly match the image gradients with the expected model 
edge gradients. The region information is also used to 
directly match the values of pixels in the image with those of 
the body model’s 3D color texture map. 

The prediction step involved minimising the cost functions:  

edge error Ee using edge information: 

2
e
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region error Er using region information: 
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where it represents the image at time t,  mt the model 
gradients at time t,  ne is the number of edge values 
summed, ve is the edge variance, nr is the number of region 
values summed, vr is the region variance, pj is the image 
pixel coordinate of the jth surface point on a body part. 

Performance is enhanced by minimising the area of body 
part being tracked, based on angular speed and occlusion. 

The new position in terms of the observation density, p(zt|xt)
is then measured and weighed with forward smoothing: 
• Estimate weights wt = p(zt|xt = st)
• Normalise weights ∑nw(n) = 1 
• Smooth weights wt over 1..t, for n trajectories 
• Replace each sample set with its n trajectories {(st,wt)} 

for 1..t 
• Re-weight all w(n) over 1..t 
Trajectories tend to merge within 10 frames 

� O(Nt) storage prunes down to O(N) 

In this paper, feedback from the CHMR system utilises the 
large training set of skills to achieve an even larger 
reduction of the search space [6]. In practice, human 
movement is found to be most efficient, with minimal DOFs 
rotating at any one time. The equilibrium positions and 
physical limits of each DOF further stabilise and minimise 
the dimensional space. With so few DOFs to track at any 
one time, a minimal number of particles are required, 

Palmerston North, November 2003 165



a

significantly raising the efficiency of the tracking process. 
Such highly constrained movement results in a sparse 
domain of motion projected by each motion vector. 

3.  DYNEMES 

Stokoe began recognising human movement in the 1970s by 
constructing sign language gestures (signs) from hand 
location, shape and movement and assumed that these three 
components occur concurrently with no sequential contrast 
(independent variation of these components within a single 
sign). Ten years later Liddel and Johnson used sequential 
contrast and introduced the movement-hold model. In the 
early 1990s Yamato et al began using HMMs to recognise 
tennis strokes. Recognition accuracy rose as high as 99.2% 
in Starner and Pentland’s work in 1996. Constituent 
components of movement have been named cheremes [23], 
phonemes [24] and movemes [2]. 

Although manual movement notation systems have been 
developed for dance [10] (such as Labanotation and Benesh), 
computer vision requires an automated approach where each 
human movement skill has clearly defined temporal 
boundaries. Just as it is necessary to isolate each letter in 
cursive handwriting recognition, so it is necessary in the 
computer vision analysis of full-body human movement to 
define when a dyneme begins and ends. This research 
defined an alphabet of dynemes by deconstructing (mostly 
manually) hundreds of movement skills into their correlated 
lowest common denominator of basic movement patterns. 

As the phoneme is a phonetic unit of human speech, so the 
dyneme is a dynamic unit of human motion. The word 
dyneme is derived from the Greek dynamikos “powerful”, 
from dynamis “power”, from dynasthai “to be able” and in 
this context refers to motion. This is similar to the phoneme 
being derived from phono meaning sound and with eme
inferring the smallest contrastive unit. Thus dyn-eme is the 
smallest contrastive unit of movement. The movement skills 
in this study are constructed from an alphabet of 35 dynemes 
which HMMs use to recognise the skills. This approach has 
been inspired by the paradigm of the phoneme as used by 
the continuous speech recognition research community 
where pronunciation of the English language is constructed 
from approximately 50 phonemes 

For example, a Centre of Mass (COM) category of dyneme 
is illustrated in Fig. 3a where each running step is delimited 
by a COM minima. A full 360o rotation of the principle axis 
during a cartwheel in Fig. 3b illustrates another dyneme 
category of rotation from the vertical. 

Fig. 3. A sequence of COM parameters during running and a 
sequence of principle-axis parameters thru a cartwheel. 

The pronunciation of the English language is constructed 
from approximately 50 phonemes. This work has so far 
determined about 35 principle dynemes with the expectation 
of more dynemes being realised in future research. 

4. SKILL RECOGNITION 

To simplify the design, it is assumed that the CHMR system 
contains a limited set of possible human movement skills.
This approach restricts the search for possible skill 
sequences to those skills listed in the skill model, which lists 
the candidate skills and provides dynemes – a set of basic 
units, individual granules of human movement – for the 
composition of each skill. The current skill model contains 
hundreds of skills where the length of the skill sequence 
being performed by a person is unknown. If M represents the 
number of human movement skills in the skill model, the 
CHMR system could hypothesize MN possible skill 
sequences for a skill sequence of length N. However these 
skill sequences are not equally likely to occur due to the 
biomechanical constraints of human motion.  

A generative probabilistic model that encapsulates this 
sequence of steps is used. Given an observed sequence of 

motion vectors y 1
T

 the recognition process attempts to find 

the skill sequence ŝ 1

N
that maximises this skill sequence’s 

probability: 

ŝ
N
1 =

1

arg max
Ns

p(s
N
1 | y

T
1 ) ≡

1

arg max
Ns

p(y
T
1 | s

N
1 ) p(s

N
1 )    (4) 

This approach applies Bayes’ law and ignores the 
denominator term to maximise the product of two terms: the 
probability of the motion vectors given the skill sequence 
and the probability of the skill sequence itself. The CHMR 
framework described by this equation is illustrated below in 
Figure 5 where, using motion vectors from the tracking 
process, the recognition process uses the dyneme, skill, 
semantic and activity models to construct a hypothesis for 
interpreting a video sequence. 

Fig. 5. Human Movement Recognition system. The dyneme, 
skill and semantic and activity models construct a hypothesis 
for interpreting a video sequence. 

In the tracking process, motion vectors are extracted from 
the video stream. In the recognition process, the search 
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hypothesizes a probable movement skill sequence using four 
models[7]: 
• the dyneme model models the relationship between the 

motion vectors and the dynemes. 
• the skill model block defines the possible movement 

skills that the search can hypothesize, representing each 
movement skill as a linear sequence of dynemes; 

• the semantic model models the semantic structure of 
movement by modeling the probability of sequences of 
skills simplified to triplets and pairs; and 

• The activity model defines the possible human 
movement activities that the search can hypothesize, 
representing each activity as a linear sequence of skills. 

5. PERFORMANCE 

Hundreds of skills were tracked and classified using a 
1.8GHz, 640MB RAM Pentium IV platform processing 24 
bit color within the Microsoft DirectX 8.1 environment 
under Windows XP. The video sequences were captured 
with a JVC DVL-9800 digital video camera at 30 fps, 720 by 
480 pixel resolution. Each person moved in front of a 
stationary camera with a static background and static 
lighting conditions. Only one person was in frame at any one 
time. Tracking began when the whole body was visible 
which enabled initialisation of the clone-body-model.  

The skill error rate quantifies CHMR system performance by 
expressing, as a percentage, the ratio of the number of skill 
errors to the number of skills in the reference training set. 
Depending on the task, CHMR system skill error rates can 
vary by an order of magnitude. The CHMR system results 
are based on a set of a total of 840 movement patterns, from 
walking to twisting saltos. From this, an independent test set 
of 200 skills were selected leaving 640 in the training set. 
Training and testing skills were performed by the same 
subjects. These were successfully tracked, recognised and 
evaluated with their respective biomechanical components 
quantified where a skill error rate of 4.5% was achieved. 

Recognition was processed using the (Microsoft owned) 
Cambridge University Engineering Department HMM Tool 
Kit (HTK) with 96.8% recognition accuracy on the training 
set alone and a more meaningful 95.5% recognition accuracy 
for the independent test set where H=194, D=7, S=9, I=3, 
N=200 (H=correct, D=Deletion, S=Substitution, I=Insertion, 
N=test set, Accuracy=(H-I)/N). 3.5% of the skills were 
ignored (deletion errors) and 4.5% were incorrectly 
recognised as other skills (substitution errors). There was 
only about 1.5% insertion errors – that is incorrectly 
inserting/recognising a skill between other skills. 

The HTK performed Viterbi alignment on the training data 
followed by Baum-Welch re-estimation with a context model 
for the movement skills. Although the recognition itself was 
faster than real-time at about 120 fps, the tracking of 32 
DOF with particle filtering was computationally expensive 
using up to 16 seconds per frame. 

However, an elongated trunk with disproportionate short 
legs is the body-model consequence of the presence of a skirt 
– the body model failed to initialise for tracking due to the 
variance of body-part proportions exceeding an acceptable 
threshold. 

Particle filter tracking also failed for loose clothing. Even 
with smoothing, joint angles surrounded by baggy clothes 
permutated thru unexpected angles within an envelope 
sufficiently large as to invalidate the tracking.  

Motion blurring lasted about 10 frames on average with the 
effect of perturbing joint angles within the blur envelope. 
Forward smoothing of the particle filter produced an 
acceptable result through the blurring sequence (Fig. 6). 

A      B      C 
Fig. 6. A: particle filter tracking through motion blur of right 
calf and foot segments during a flick-flack (back-
handspring).  
B: 3 alternative particles (knee angles) for the right calf 
location. 
C: Corrected particle filter tracked location. 

6. CONCLUSIONS AND FUTURE RESEARCH 

Recognition of human movement skills was successfully 
processed using the Cambridge University HMM Tool Kit. 
Probable movement skill sequences were hypothesized using 
the recognition process framework of four integrated models 
- dyneme, skill, context and activity models. The 95.5% 
recognition accuracy (H=194, D=7, S=9, I=3, N=200) 
validated this framework and the dyneme paradigm. 

However, the 4.5% error rate attained in this research is not 
yet evaluating a natural world environment nor is this a real-
time system with up to 16 seconds to process each frame. 
The CHMR system did achieve 95.5% recognition accuracy 
for the independent test set of 200 skills which encompassed 
a much larger diversity of full-body movement than any 
previous study. Although this 95.5% recognition rate was 
not as high as the 99.2% accuracy Starner and Pentland [20] 
achieved recognising 40 signs, a larger test sample of 200 
skills were evaluated in this paper. 

Using this CHMR framework, a general robust and efficient 
biometric analysis has also been applied by the author to 
anthropometric data, gait signatures, various human 
activities and movement disorders [8]. 

With larger training sets, lower error rates are expected. 
Generalisation to a user independent system encompassing 
partial body movement domains such as sign language 
should be attainable. To progress towards this goal, the 
following improvements seem most important: 
• Expand the dyneme model to improve discrimination of 

more subtle movements in partial-body domains. This 
could be achieved by either expanding the dyneme 
alphabet or having domain dependent dyneme alphabets 
layered hierarchically below the full-body movement 
dynemes. 

• Expand the clone-body-model to include a complete 
hand-model for enabling even more subtle movement 
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domains such as finger signing and to better stabilise 
the hand position during tracking. 

• Use a multi-camera or multi-modal vision system such 
as infra-red and visual spectrum combinations to better 
disambiguate the body parts in 3D and track the body in 
3D. 

• More accurately calibrate all movement skills with 
multiple subjects performing all skills on an accurate 
commercial tracking system recording multiple camera 
angles to improve on depth of field ambiguities. Such 
calibration would also remedy the qualitative nature of 
tracking results from computer vision research in 
general.  

• Enhance tracking granularity using cameras with higher 
resolution, frame rate and lux sensitivity. 

• Improve the robustness and accuracy of the system, 
especially the poorly observable depth DOFs, by 
applying to the Particle filter, inflated posteriors and 
dynamics for sample generation and then reweighing 
the results. 

So far movement domains with exclusively partial-body 
motion such as sign language have been ignored. 
Incorporating partial-body movement domains into the full-
body skill recognition system is an interesting challenge. 
Can the dyneme model simply be extended to incorporate a 
larger alphabet of dynemes or is there a need for sub-domain 
dyneme models for maximum discrimination within each 
domain? The answers to such questions may be the key to 
developing a general purpose unconstrained skill recognition 
system. 
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