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Abstract

The effects of occlusion, scaling and edges in images on the dependence of the power spectrum on spatial frequency
is studied using a simple model. The results are compared to the power spectrum behaviour that has been observed
for natural images: images of the natural environment that are processed by the human visual system.
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1 Introduction

The human (and other vertebrates) visual system ex-
tracts information from the environment. The early
visual system samples the visual field rather coarsely
relative to the full information content, so that an ef-
ficient image-coding scheme is an important part of
visual processing [1]. An efficient coding scheme de-
pends on the statistics of the input and the information
required in the output. It has been argued that the visual
system has developed in such a way that the coding
scheme is optimised for the properties of the visual
world, as a way of removing image redundancy [1].
Images from the natural environment, that we refer to
as natural images, are not random patterns, but show a
number of consistent statistical properties. The study of
such properties is therefore of relevance to the detailed
makeup of the visual system, i.e. why visual neurons
behave the way they do. Since modern techniques of
image display are based in part on image models as
well as models of visual perception, such properties of
images are of technological interest also.

A property of natural images that has received con-
siderable attention by many authors is the character-
istic that the rotationally averaged spatial power spec-
trum of image ensembles S(f) behaves approximately
as f~7 where f is spatial frequency and y = 2 (typ-
ically 1.8 < y < 2.3) [1, 2, 3, 4]. Individual images
also exhibit similar behaviour although there is more
irregularity in the linear dependence of the log power
spectrum versus log f, and the slopes can deviate more
from 2 [2]. An example for a single image is shown
in Fig. 1. This property is often referred to as scaling,
although we will reserve this term here for properties
of images in the spatial, rather than spatial frequency,
domain. This characteristic behaviour of the power
spectrum has been discussed in terms of the response
properties of visual cortical cells [1].
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Relevant questions are then: (1) What are the salient
statistical characteristics of natural images, and (2)
What is it about these statistics that produces the
characteristic dependence of the power spectrum on
spatial frequency?

The first question, although complex, can probably be
answered in large part as follows. A visual scene is
generally made up of opaque objects, the objects have
a wide range of sizes and shapes, and the luminosity of
individual objects is relatively constant. In other words,
partially transparent objects and objects with continu-
ously graded luminosity tend to be quite uncommon in
the natural environment. Since the objects are opaque,
they occlude other objects, or parts of objects, behind
them. In this sense then, a simple model of the vi-
sual environment is a collage of occluding, constant
intensity objects with a wide range of sizes. There
is evidence that the distribution of the object sizes is
self-similar [3, 5], which we refer to here as scaling.
An important consequence of this observation is that
such a scene will contain many sharp amplitude edges,
with a characteristic range of spacings between them,
at the boundaries between the occluding constant inten-
sity regions. This model of the natural visual environ-
ment has been discussed by a number of authors [3, 6].

The second question then becomes whether, and how,
occlusion, edges and/or scaling are the source of the
characteristic dependence of the power spectrum on
spatial frequency. This is the topic of this paper.
This question has been investigated by a number of
authors although a clear answer is still lacking. Issues
revolve around the relative importance of scaling
and edges, and the range of spatial frequencies over
which power law behaviour of the power spectrum
is present [3, 6, 7, 8]. We shed further light on this
question by simulation using a simple model of natural
images.
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Figure 1: (a) A natural image (256 x 256 pixels), and
(b) its circularly averaged power spectrum (thick line)
and a linear fit to the high frequency portion (thin line).
The slope in (b) is 2.3.

2 Methods

We use an image model that consists of disks placed
at random in an image frame of N x N pixels. Al-
though an actual scene consists of objects of a variety
of shapes, this approximate model should be sufficient
since we are concerned with the circularly averaged
power spectrum. Our primary model consists of oc-
cluding disks, each of constant amplitude that is uni-
formly distributed in the range 0 to 255, and the image
is self-similar so that the disk radii o follow the power
law probability density

P(ry) =Arg %, (0

where we refer to o as the scaling exponent. Disks are
added sequentially to the image such that an added disk
occludes the pixels that it occupies, i.e. occludes the
parts of disks added previously that occupy the same
pixels. The sequence in which disks are added is also
governed by the density P(r).
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In an image of unbounded extent there is a lower bound
on the scaling exponent ., firstly to ensure that Eq. (1)
represents a probability density (¢ > 1), and secondly
to prevent an over predominance of large disks (that
will occlude most of the smaller disks). Note that o¢ > 3
is required to give P(r) a finite second moment. How-
ever, all real images are of finite extent and it makes
sense to impose an upper bound on the disk radii, 7y,
that is somewhat less than half the extent of the image.
It also makes sense to impose a lower bound on the disk
radii, i, that is somewhat greater than the pixel size.
For a finite range of disk radii there is no restriction
on the exponent o, however the visual world gener-
ally contains more smaller features than larger features,
i.e. o0 > 0. Large values of ¢ lead to a sharply peaked
distribution and a narrow range of radii which is not an
appropriate representation of the visual world. We used
the range 0.5 < o < 3 in the simulations.

This image model is consistent with the general char-
acteristics of natural images as described above, and
possesses the characteristics of occlusion, edges and
self-similarity. We also generated different kinds of
images in order to study the effect of each of these
characteristics.

In order to study the effect of occlusion, we generated
nonoccluding images in which the addition of each disk
corresponds to addition of the amplitude of the disk to
the current amplitudes of the pixels that the disk occu-
pies. This corresponds to the superposition of partially
transparent objects. The amplitude of nonoccluding
images is linearly rescaled to the range 0-255.

To study the effect of edges (or absence of edges) we
generated images that do not have edges. The images
are made up of nonoccluding disks whose amplitude
I(r) is a function of radius r from the center of the disk
and is given by

I(r)=L, O<r<ry—a
L —
= — <1+cos<w>>, rp—a<r<rg
2 a
(2)
I(r)
L
r,—a " r

Figure 2: Amplitude function for objects in images
without edges.
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Figure 3: Model self-similar (a) occluding (b) nonoccluding images with edges, and (c) images without edges, for
a =1 (top row), & = 2 (middle row), and & = 3 (bottom row). (d) Non self-similar images with an exponential
size distribution for d = 10 (top), d = 5 (middle) and d = 3 (bottom).

where L is the amplitude at the center of the disk, and
a is a constant for which we use a = ry;,. The func-
tion /(r) is shown in Fig. 2. The form of Eq. (2) is
chosen so that its high frequency spectral content is
approximately independent of r,. Images generated
with nonoccluding disks with amplitude /(r) do not
have edges. Note that L is uniformly distributed and
that r,, is distributed as Eq. (1).

To study the effect of self-similarity we also generated
images that consist of occluding, constant amplitude
disks, but whose radii are distributed as

P(rg) = Ae'0/? 3)

where d is a correlation length. Images generated using
the distribution Eq. (3) are not self-similar. The ensem-
ble averaged, circularly averaged power spectrum S(f)
is defined by

S(f) = (Si())i = (FEF )P y)i )

where F;(f,y) is the Fourier transform (spectrum) of
the i-th image in the ensemble, (f,y) are cylindrical
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polar coordinates in Fourier (spatial frequency) space,
and ()y and (); denote averaging over ¥ and i, re-
spectively. Individual circularly averaged power spec-
tra were calculated using the FFT and averaging over
shells in Fourier space of thickness equal to two sample
spacings.
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Figure 4: Circularly averaged power spectra for indi-

vidual model occluding images for «x =1 (—), ® =2
(——)and ot =3 (—-—).
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Figure 5: Ensemble averaged power spectra (thick lines) for (a) occluding and (b) nonoccluding self-similar images
with edges, and (c) self-similar images without edges for o = 1 (top line), o = 2 (middle line) and @ = 3 (bottom
line). Ensemble averaged power spectra for images with an exponential size distribution are shown in (d) for
d = 10 (top line), d = 5 (middle line) and d = 3 (bottom line). Plots have been shifted vertically to eliminate
overlap. Linear fits to the high frequency portions are shown by the thin lines.

The power spectra were fitted to the power law depen-
dence

S(f)=Bf"7 ®)

by fitting a regression line to the log-log power spec-
trum data in the range 0.1f,. < f < 0.7 finax, Where
Sfmax 18 the maximum spatial frequency for which the
spectrum is calculated. The exponent y was calculated
from the slope of the regression line.

3 Resulis

Model occluding images were generated as described
above with N = 512, i, = 10 and rpqr = 50 pixels,
1000 disks per image, and values of & spaced by 0.5.
Example images are shown in Fig. 3(a), in which the
effects of occlusion and the scaling exponent can be
clearly seen. Circularly averaged power spectra of
individual images, S;(f), were calculated as described
above and examples plotted on a log-log scale are
shown in Fig. 4 for occluding images with different
values of . An immediate observation is that the
circularly averaged power spectra are approximately
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linear over much of the spatial frequency range, and
are rather similar for different values of ¢ although
there are some differences at small spatial frequencies.
The individual power spectra were averaged over 20
images and the exponent y calculated as described
above. The ensemble averaged power spectra and
linear fits to the high frequency portions are shown
in Fig. 5(a). Inspection of the figure shows linear
behaviour over most of the spatial frequency range,
but some deviation from linearity at low frequencies
for larger values of o. There is evidence of some
oscillations at high spatial frequencies for larger values
of a which is due to the distribution of disk radii being
quite sharply peaked and the spectrum approaching
that of a single disk. The variation of y versus « is
shown in Fig. 6. The most obvious feature is that there
is little variation of y with «.

To examine the effect of occlusion, nonoccluding im-
ages were generated as described above and example
images are shown in Fig. 3(b). Ensemble averaged
power spectra S(f) were calculated and are shown in
Fig. 5(b). The power spectra are similar to those for
occluding images but linearity is evident over a smaller
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Figure 6: Variation of the exponent y with the scaling
exponent ¢ for occluding (—) and nonoccluding (— —)
images with edges, and images without edges (—- —:),
and with the correlation length d for occluding images
with edges (---).

range of high spatial frequencies. The high frequency
slopes are plotted in Fig. 6 where they are seen to be
independent of & and practically identical to those for
occluding images.

To examine the effect of edges, images without edges
were generated using nonoccluding disks with an am-
plitude profile give by Eq. (2) as described in Section
2. Examples of such images for three different values
of a are shown in Fig. 3(c). Ensemble averaged spectra
were calculated and are shown in Fig. 5(c). The spectra
are seen to be not particularly linear over any range of
spatial frequencies. The average slopes over the high
spatial frequency range are much larger than for the
images with edges, being in the range 4.0 —4.6. The
slopes versus  are shown in Fig. 6.

To examine the effect of scaling, images that are not
self-similar were generated consisting of occluding,
constant amplitude disks with radii following the
exponential distribution Eq. (3) with correlation length
d varying between 3 and 10 pixels. Example images
are shown in Fig. 3(d). Ensemble averaged power
spectra were calculated and are shown in Fig. 5(d).
The spectra are approximately linear but over a slightly
smaller range of spatial frequencies than for self-
similar images. The range of spatial frequencies over
which the spectrum is linear somewhat reduced for
smaller correlation length and there is more evidence
of the spectrum of a single disk. The slopes of the
linear portions are plotted versus d in Fig. 6 and are
seen to be relatively independent of d and of similar
value to the case of self-similar images.
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4 Conclusions

A detailed study of the effects of various image char-
acteristics on the dependence of the power spectrum
on spatial frequency has been presented using a simple
model of natural images. For the reference model of
self-similar images containing constant amplitude oc-
cluding objects, i.e. with edges, the log power spectra
are linear over a wide range of spatial frequencies with
a slope of ~ 2.8. There is more deviation from linearity
for a small range of object sizes (large ¢¢) since the
transform approaches that of a single object. If the im-
age consists of nonocluding objects, there is a deviation
from linearity for smaller spatial frequencies although
the effect is not large. The reasons for this are not clear.
Nonoccluding objects lead to more edges of smaller
amplitude. This effect will increase as more objects
(disks) are included, and for a very large number of
objects the image will be more uniform and the effect
of edges is expected to be supressed. Images that do
not contain edges give log power spectra that do not
vary linear with spatial frequency, however this could
be due to the objects we used not being not self-similar
(although their sizes are self-similar). The significant
effect of the absence of edges is that the power spectra
falls off more rapidly with spatial frequency with y ~
4. This is due to the spectra of the individual objects
falling off more rapidly with spatial frequency. The
log power spectra of images containing objects with an
exponential size distribution are approximately linear
with spatial frequency, although not over quite as wide
a range as for those containing objects with a power
law size distribution.

There has been some controversy concerning the rela-
tive importance of occlusion, edges and self-similarity
as contributing factors to the ensemble average power
spectra of natural images exhibit power law behaviour
over a wide range of spatial frequencies. The results of
the detailed study presented here indicate that the pres-
ence of edges is necessary for the observed behaviour,
and that self-similarity, although not essential, extends
the range of spatial frequencies over which power law
behaviour is present. Occlusion generally tends to ac-
centuate the presence of edges.

The value of 2.8 we obtain for ¥ is somewhat larger
than is typically seen in natural images although this is
probably due to the particular objects (disks) that we
have used. We note that the approximate analysis of
Ruderman [3] suggests a rather strong dependence of
Y on @, although the results presented here do not bear
this out for this image model.
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