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Abstract

3D reconstruction is one of the main components in computer vision. The dynamic stereo model applied to rotating
objects on a turntable provides a way of analyzing object’s surface or 3D position. In this paper, we extend work
reported in [S]: we correct an error in computing the rotational angle; and we present a new procedure for 3D
object reconstruction with unknown rotation angle by using orthogonal coordinates in a dynamic stereo model.
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1 Introduction

The dynamic stereo model can be used to reconstruct
surfaces of objects or to analyze 3D positions, see Fig.
1. We consider an object on a turntable, images are
captured at different times. See [1] page 209 Task 5.2:
For a surface point P = (X,,,Y,,,Z,,), it is assumed that
its motion from image E; to image E; + 1 could be
tracked exactly. The rotation angle 6 of the turntable
is assumed to be known. The world coordinates X,,,
Y, and Z,, of the point P have to be determined. This
is to analyze the 3D position of point P. Actually the
rotation angle 0 is not necessary to be known. [5] pre-
sented two solutions for calculating the rotation angle
0. One is a straightforward solution, and the other is
using cylinder coordinates. We found that the formula
on calculating angle 0 is not correct in the straightfor-
ward solution. In Sec. 3 we will correct it and show our
detailed solution. Besides the calculation of angle 8
using cylinder coordinates, we also present our solution
of calculating angle 8 using orthogonal coordinates.

The paper is structured as follows: Section 2 presents
our method for calculating the rotation angle 8 using
orthogonal coordinates; Section 3 presents our calcula-
tion procedure for correcting the formula stated in [5];
and Section 4 gives our conclusions.

2 Orthogonal Coordinates

[5] presented an approach for calculating 3D object
positions by using cylinder coordinates. It defined an
upward Z direction and used a left-hand coordinate
system. In this section, we present an alternative
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approach by using orthogonal coordinates and the
right-hand coordinate system for reconstructing
3D objects. Assume a pair of points in image
coordinates (x1,y;) and (x2,y2), the corresponding
world coordinate points are P = (X,Y,Z) and the point
after rotation is P' = (X’,Y’,Z’). The corresponding
camera coordinate points are C = (X, Y;,Z;) and the
point after rotation is C" = (X/,Y/,Z;). The distorted
image coordinates (x,,,y,,) and (xy,,y,) can be
calculated from

That is,
xidl —cy
Xyy = ———— and vy :yldy — Gy,
Sx
xodl. —cy
Xy, = e and y,, = y2dy —c,.
X

The undistorted image coordinates (x,,,y,,) and
(%u,,Yu,) can be calculated from

X | | x| D,
v Yu D 'y ’
where

D, = x, (ki P+ k2r4) and Dy = yv(klr2 + k2r4))

with r = \/x2+yZ. That s,
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The undistorted image coordinates can be obtained
from the corresponding camera coordinates by using
central projection,

Z “T 7

Therefore, the camera coordinates can be rewritten as
in the following form:

&

S

C=27 ’71 =7.-E and (D)
1
x‘i

! ! y';f ! /

C =z 72 =7Z.-E. 2)
1

Consider the affine transformation from world into
camera coordinates, with rotation matrix R and
translation vector T,

ryory r3 T,
R=|ry rs re | andT=| T,
r7 T8 Ty T;

The world coordinates can be transformed to the cam-
era coordinates by using the following equation

C=R-P+TandC'=R-P' +T.
From equations (1) and (2), we have

P=R Y% -E-T)=R"(Z-E—T)and (3)
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P =R Yz,-E'~T)=R"(Z,-E'-T). 4)

Assumption 1. The rotation axis is parallel to the Y
axis of the world coordinate system (see Fig. 1).

If the dynamic stereo system satisfies assumption 1,
the rotation axis is across the point 7, = (X,,0,Z.).
The values of X, and Z, can be calibrated. The point
P = (X}.Y,.Z,,) is the transformation point of P =
(Xw, Y, Z,) which is rotated 6 degree around the ro-
tation axis.

Assume that our world coordinate system is a right-
hand system, as already stated in [1] the rotation matrix
Ry is as follow

cos@ O sinO
Ry = 0 1 0
—sin® 0 cos@

The world coordinate points P’ and P satisfy the fol-
lowing equation

P'=T.+Ry-(P—T,).

From equations (3) and (4), the above equation can be
rewritten as (see [1])

R' -(Z,-E'~T)=T.+Rg-(R" - (Zt-E—~T)—T.).(5

Although the algorithm still assumes that the rotation
angle is given (see [1, page 209]), it is known that in
general the rotation angle 6 can be determined from
one pair of corresponding projections of the same sur-
face point [5]. The system A -z = b of linear equations
allows that the rotation angle 6 does not have to be as-
sumed to be known (see [1, page 212]). We will prove
that the rotation angle is unnecessary to be known. In
order to prove this, first we need to compute Z;. Then it
follows that Z,’C can be calculated, and our theorem can
be proved. The details of calculating Z; and Z; are in
Appendix A.

Theorem 2.1 In equations (1) and (2), assume that
7 #0; Z, # 0 and dy # 0; and a3 + a3 — K*(d? +
%) # 0. Then we have

2[—(6111)1 —|—a3b3) —I—k/(allbl +a’3b3)]
(a2 +a3) —k?(a}? +d?)

Zy =

and

Z, = k7.
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For this theorem, we use

xu] yu1
ey = — and ey = ——

f r’
1 Kuy 1 Yup
eg=—and ey = —=,

f f

ay =rie;t+raep+ry, ax =mrey+rsexy+rs,

/ / /
azy =r3e| +reex+rg, a; =rie|+rse,+ry,

/ / / / / /
ay =mne;+rse,+rg, a3 =rie|+reep+ro,

by =by =—(nT+raTy+rT,+X.),
by =by = —(rTy+rsTy+rsT. +0),
by =by = —(r3Ty+reTy +r3T. + Z)

and
provided that
day # 0.

3 3D Position from Unknown Angle

[5] discusses in section “World Position for Unknown
Rotation” a straightforward solution. However, equa-
tion (29) of calculating rotation 0 is incorrect. In this
section, we will correct this formula and present a de-
tailed derivation. Compared with [5], we will use sym-
bols ay, a3, a3 instead of a,, ay, a,, same changes to b
and c. So we also have by, by, b3 and cy, ¢, ¢3. From
equations (25), (26) and (27) of page 132 in [5] we can
get the following formula:

z1a1—c1 = (z2b1 —c1)cos 0 — (zaby — c2) sin B (6)
zia—cy = (z22b1 —c1)sinO + (z2b2 — ¢3) cos 0 (7)
a3 —c3 = 2b3—c3 3

Solve z; from equation (8), and use it in equation (6)
and (7), it follows that:

Z1a; — €1

=(%b] —c1)cosB — (%bz —c)sin6

= Zl(Z—;bICOSG — Z—;bzsine) —c1cos0+crsin 0

144

€))

By (9), we have

c1 —c1cos0 +cysinf

4= al—Z—;blcosG—&-Z—;bzsine
B b3(c1 —c1cos0 +cpsin0) (10)
- aiby —asbycos 6 + azby sin O

Similarly,

b3(cp —c18in@ —cycos0)
71 = . 1D
a2b3 — a3b1 sin @ — a3b2 cos O

Compare (10) with (11), we get

b3(c1 —c1cos0 +cysin0)

a4 = a1bz —azby1cos 0 +azby sin O
_ b3(cp —c1sin@ —cycos0)
" axb3—azb; sin@ — azbycos O
(12)
or
_ c1—c1cos0 +cpsinf
4= a1bz —azby1cos 0 +azby sin O
_ cz—clsiI?G—czcose (13)
a2b3 — a3b1 sin@ — a3b2 cos O
Note that
ing — 2tan% 2 14
sinf = a8 sz( )
and
1—x2
6 = 15
cos T (15)
where
X =tan — (16)

After replacing sin 6 and cos 6 with (14) and (15), (13)
becomes

2x

c1—cC i—i—c .
17Ol T2 2

1—x2 2x
aibs —asb, ﬁ +a3b21+7

) 2

o X . 1—x

— c2—a 14x2 @ 14x2 (17)
2 1-x2
arby —azbi {75 —asbaTs
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So (17) can be reduced to

[c1(a2bs + azby) — ca(arbs +azby )]

+[—2a3(bic1 —byca) +cr(anbs +azby)
+ei(arbs +asby)]x*

+[=2as(bicy — bacy) + ci(arbs — azby)
—Cz(a1b3 —a3b1)]x

Figure 2: Left is the original image of a golf head.
+lea(azbs —azbs) +ci(aibs —aszb))] =0  (18)  Right is the reconstructed result in 3D.

[1], which assumes that the rotation angle is known.
We provided details for calculating rotation angle. Our
results are illustrated in Fig.2. Here a golf head was
reconstructed by placing it on a turntable.

Assume that
c1(axbs +azbr) —ca(arbs +asby) #0

Then equation (18) has a real root (see [6], [7], [8])
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, A Proof of Theorem 2.1.
By (16) and (19) we finally obtain

From equation (5), we have
6 = 2arctanx.

R' -(Z,-E'—=T)—T.=Rg-(R" - (Z4-E—T) —T.)(20)
4 Conclusions

The left hand side of equation (20) equals to
The rotational dynamic stereo model is a common

model in 3D object reconstruction and object’s position Xu

2
.. . ry r4 r - T, X
analysis in world coordinates. We proved that the bohe |, Y N
. . . rh Frs g Z | =2 |- | T -1 0
rotation angle is not necessary to be known. This f
r3 re Iog 1 T, Z

result is important, for the algorithm on page 209 in
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r.ory 1 / e T Xe (—sin®) - (a1Zx +by) +cos 6 - (a3Z; + b3)
=\ rn rs rg Z; 8/2 - | T — 0 _ 0'3212 + b’3.
r3 e 19 1 T Z 26)
From equation (25) and note that b, = b'z, we obtain
ayZ; + b}
7L+ | Q) w7z =dZ. @7)
asZ; + bl

From equation (10), it follows that

The right hand side of equation (20) equals to P )
a1Z+by =cos0-(a1Zy+by)+sin0 - (a3Zy + b3). (28)

Xuy
ri r4 17 T 7} . .
Ro | r rs e Z _y% g From equation (24), it follows that
T,
oo’ ! : dyZ) + by = (—sin@) - (a1Z +b1) +cos 0 - (asZi + b3). (29)
F X
—Rg| O Squaring equations (28) and (29), we have
- ZC
(e Z+81)° + (3 Z + 15)°
rLorg Ty e [ T:
=Rg| mn r5 18 Zy|ea | —| Ty =[cos O - (a1Z; +by) +sin @ - (a3 Z; + b3)]?
r3y rg Iy 1 | I
. +[(-sin ) - (a1Z; +b1) +cos 8 - (azZy + b3)]?
C
-Rg| O (30)
L ZC
a1Zi+ by Now the left hand side of equation (30) equals to
= Ry | ampZy+by |. 22)
a7y + by (a? +a3)Z2 +2(a b +asbh)Zi + (B +07)
Since
From equation (22) it follows that the right hand side
of equation (20) equals to b\ = by and b}y = b3,
cosf 0 sin6 a1Zi+by then the left hand side of equation (31) equals to
0 1 0 arZy+ by
—sinf 0 cos® azZy+ b3 (d?+a2)Z2 +2(d\b) +dyby)Z,+ (B3 +b3)  (31)

And the right hand side of (31) equals to
cos0 - (a1Z; +by)+
sin0 - (a3Z; + b3) = (a1Z;+b1)*(cos® O +sin’ 0)
- (s g’)QZ(k +sz b) : 23) + (a3Z 4 b3)*(sin” @ +cos? 0)
—smo)-(a14y+01)+ .
c0s0 - (asZs + b3) +2c0s0 - (a1Z;+by)-sin0 - (a3Z; + b3)
—2cos 8- (ale+b1) -sin @ - (a3Zk—|—b3)

From (21) and (23), we have = (a7 +a@3)Z +2(arby +asbs)Zi+ (b7 + b3)
(32)
cos0 - (a1Z;+by) +sin0 - (a3Z; + b3)
=d\Z; +b}, From (31) and (32), we have
(24)

(df +d7)Z7 +2(d\ by + d5b5)Z;
= (a} +d3)Z; +2(a1by + azb3)Z.
wmZi+by = dbZ,+bh, and (25) (33)
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We combine equation (27) with the second condition in
the theorem. It follows that

7z, = 2z
2
= K7, where k' = 2. (34)
a

From equation (33), we have

(at +a3) — K*(af +d)|Z; +

2[(a1by +aszbz) — k’(a’lbl +a’3b3)]Zk =0.

From the first condition in the theorem it follows that

Zi #0.
In accordance with the third condition in the theorem:

a2 +a3 —K*(a? +d?) #0.

So

7 — —2[(a1b1 +azbz) — k' (d\ by + ab3)] '
(a?+d3) —k?(af? +df)

Or

7 — 2[—(aiby +azbs) + K (d\ b1 + d5b3)] .

(a2 +d3) —k2(a}? +d)

This together with equation (34), it follows that Z; can
be calculated. Our theorem is now proved. QED.

Palmerston North, November 2003

147





