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Abstract
3D reconstruction is one of the main components in computer vision. The dynamic stereo model applied to rotating
objects on a turntable provides a way of analyzing object’s surface or 3D position. In this paper, we extend work
reported in [5]: we correct an error in computing the rotational angle; and we present a new procedure for 3D
object reconstruction with unknown rotation angle by using orthogonal coordinates in a dynamic stereo model.
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1 Introduction

The dynamic stereo model can be used to reconstruct
surfaces of objects or to analyze 3D positions, see Fig.
1. We consider an object on a turntable, images are
captured at different times. See [1] page 209 Task 5.2:
For a surface point P = (Xw,Yw,Zw), it is assumed that
its motion from image Ei to image Ei + 1 could be
tracked exactly. The rotation angle θ of the turntable
is assumed to be known. The world coordinates Xw,
Yw and Zw of the point P have to be determined. This
is to analyze the 3D position of point P. Actually the
rotation angle θ is not necessary to be known. [5] pre-
sented two solutions for calculating the rotation angle
θ . One is a straightforward solution, and the other is
using cylinder coordinates. We found that the formula
on calculating angle θ is not correct in the straightfor-
ward solution. In Sec. 3 we will correct it and show our
detailed solution. Besides the calculation of angle θ
using cylinder coordinates, we also present our solution
of calculating angle θ using orthogonal coordinates.

The paper is structured as follows: Section 2 presents
our method for calculating the rotation angle θ using
orthogonal coordinates; Section 3 presents our calcula-
tion procedure for correcting the formula stated in [5];
and Section 4 gives our conclusions.

2 Orthogonal Coordinates

[5] presented an approach for calculating 3D object
positions by using cylinder coordinates. It defined an
upward Z direction and used a left-hand coordinate
system. In this section, we present an alternative

approach by using orthogonal coordinates and the
right-hand coordinate system for reconstructing
3D objects. Assume a pair of points in image
coordinates (x1,y1) and (x2,y2), the corresponding
world coordinate points are P = (X ,Y,Z) and the point
after rotation is P′ = (X ′,Y ′,Z′). The corresponding
camera coordinate points are C = (Xk,Yk,Zk) and the
point after rotation is C′ = (X ′

k,Y
′
k ,Z

′
k). The distorted

image coordinates (xv1 ,yv1) and (xv2 ,yv2) can be
calculated from

[
xb
yb

]
=

[
sxxv
d′xyv
dy

]
+
[

cx
cy

]
.

That is,

xv1 =
x1d′

x − cx

sx
and yv1 = y1dy − cy,

xv2 =
x2d′

x − cx

sx
and yv2 = y2dy − cy.

The undistorted image coordinates (xu1 ,yu1) and
(xu2 ,yu2) can be calculated from

[
xv
yv

]
=
[

xu
yu

]
−
[

Dx
Dy

]
,

where

Dx = xv(k1r2 + k2r4) and Dy = yv(k1r2 + k2r4))

with r =
√

x2
v + y2

v . That is,
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Figure 1: Dynamic stereo model (Y axis towards
viewer).

xu1 = xv1 +Dx1 and yu1 = yv1 +Dy1 ,

xu2 = xv2 +Dx2 and yu2 = yv2 +Dy2 ,

The undistorted image coordinates can be obtained
from the corresponding camera coordinates by using
central projection,

xu =
f Xk

Zk
and yu =

fYk

Zk
.

Therefore, the camera coordinates can be rewritten as
in the following form:

C = Zk

⎡
⎢⎣

xu1
f

yu1
f
1

⎤
⎥⎦= Zk ·E and (1)

C′ = Z′
k

⎡
⎢⎣

xu2
f

yu2
f
1

⎤
⎥⎦= Z′

k ·E ′. (2)

Consider the affine transformation from world into
camera coordinates, with rotation matrix R and
translation vector T ,

R =

⎡
⎣

r1 r2 r3
r4 r5 r6
r7 r8 r9

⎤
⎦ and T =

⎡
⎣

Tx
Ty
Tz

⎤
⎦ .

The world coordinates can be transformed to the cam-
era coordinates by using the following equation

C = R ·P+T and C′ = R ·P′ +T.

From equations (1) and (2), we have

P = R−1(Zk ·E −T ) = RT (Zk ·E −T ) and (3)

P′ = R−1(Z′
k ·E ′−T ) = RT (Z′

k ·E ′−T ). (4)

Assumption 1. The rotation axis is parallel to the Y
axis of the world coordinate system (see Fig. 1).

If the dynamic stereo system satisfies assumption 1,
the rotation axis is across the point Tc = (Xc,0,Zc).
The values of Xc and Zc can be calibrated. The point
P′ = (X ′

w,Y ′
w,Z′

w) is the transformation point of P =
(Xw,Yw,Zw) which is rotated θ degree around the ro-
tation axis.

Assume that our world coordinate system is a right-
hand system, as already stated in [1] the rotation matrix
Rθ is as follow

Rθ =

⎡
⎣

cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎤
⎦ .

The world coordinate points P′ and P satisfy the fol-
lowing equation

P′ = Tc +Rθ · (P−Tc).

From equations (3) and (4), the above equation can be
rewritten as (see [1])

RT · (Z′
k ·E ′−T ) = Tc +Rθ · (RT · (Zk ·E −T )−Tc).(5)

Although the algorithm still assumes that the rotation
angle is given (see [1, page 209]), it is known that in
general the rotation angle θ can be determined from
one pair of corresponding projections of the same sur-
face point [5]. The system A · z = b of linear equations
allows that the rotation angle θ does not have to be as-
sumed to be known (see [1, page 212]). We will prove
that the rotation angle is unnecessary to be known. In
order to prove this, first we need to compute Zk. Then it
follows that Z′

k can be calculated, and our theorem can
be proved. The details of calculating Zk and Z′

k are in
Appendix A.

Theorem 2.1 In equations (1) and (2), assume that
Zk �= 0; Z′

k �= 0 and a′2 �= 0; and a2
1 + a2

3 − k′2(a′21 +
a′23 ) �= 0. Then we have

Zk =
2[−(a1b1 +a3b3)+ k′(a′1b1 +a′3b3)]

(a2
1 +a2

3)− k′2(a′21 +a′23 )

and

Z′
k = k′Zk.
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For this theorem, we use

e1 =
xu1

f
and e2 =

yu1

f
,

e′1 =
xu2

f
and e′2 =

yu2

f
,

a1 = r1e1 + r4e2 + r7, a2 = r2e1 + r5e2 + r8,

a3 = r3e1 + r6e2 + r9, a′1 = r1e′1 + r4e′2 + r7,

a′2 = r2e′1 + r5e′2 + r8, a′3 = r3e′1 + r6e′2 + r9,

b1 = b′1 = −(r1Tx + r4Ty + r7Tz +Xc),

b2 = b′2 = −(r2Tx + r5Ty + r8Tz +0),

b3 = b′3 = −(r3Tx + r6Ty + r8Tz +Zc)

and

k′ =
a2

a′2

provided that

a′2 �= 0.

3 3D Position from Unknown Angle

[5] discusses in section ”World Position for Unknown
Rotation” a straightforward solution. However, equa-
tion (29) of calculating rotation θ is incorrect. In this
section, we will correct this formula and present a de-
tailed derivation. Compared with [5], we will use sym-
bols a1, a2, a3 instead of ax, ay, az, same changes to b
and c. So we also have b1, b2, b3 and c1, c2, c3. From
equations (25), (26) and (27) of page 132 in [5] we can
get the following formula:

z1a1 − c1 = (z2b1 − c1)cosθ − (z2b2 − c2)sinθ (6)

z1a2 − c2 = (z2b1 − c1)sinθ +(z2b2 − c2)cosθ (7)

z1a3 − c3 = z2b3 − c3 (8)

Solve z2 from equation (8), and use it in equation (6)
and (7), it follows that:

z1a1 − c1

=( z1a3
b3

b1 − c1)cosθ − ( z1a3
b3

b2 − c2)sinθ

= z1(
a3
b3

b1 cosθ − a3
b3

b2 sinθ)− c1 cosθ + c2 sinθ

(9)

By (9), we have

z1 =
c1 − c1 cosθ + c2 sinθ

a1 − a3
b3

b1 cosθ + a3
b3

b2 sinθ

=
b3(c1 − c1 cosθ + c2 sinθ)

a1b3 −a3b1 cosθ +a3b2 sinθ
(10)

Similarly,

z1 =
b3(c2 − c1 sinθ − c2 cosθ)

a2b3 −a3b1 sinθ −a3b2 cosθ
(11)

Compare (10) with (11), we get

z1 =
b3(c1 − c1 cosθ + c2 sinθ)

a1b3 −a3b1 cosθ +a3b2 sinθ

=
b3(c2 − c1 sinθ − c2 cosθ)

a2b3 −a3b1 sinθ −a3b2 cosθ
(12)

or

z1 =
c1 − c1 cosθ + c2 sinθ

a1b3 −a3b1 cosθ +a3b2 sinθ

=
c2 − c1 sinθ − c2 cosθ

a2b3 −a3b1 sinθ −a3b2 cosθ
(13)

Note that

sinθ = 2tan θ
2

1+tan2 θ
2

= 2x
1+x2 (14)

and

cosθ =
1− x2

1+ x2 (15)

where

x = tan
θ
2

(16)

After replacing sinθ and cosθ with (14) and (15), (13)
becomes

z1 =
c1 − c1

1−x2

1+x2 + c2
2x

1+x2

a1b3 −a3b1
1−x2

1+x2 +a3b2
2x

1+x2

=
c2 − c1

2x
1+x2 − c2

1−x2

1+x2

a2b3 −a3b1
2x

1+x2 −a3b2
1−x2

1+x2

(17)

144 Image and Vision Computing NZ



So (17) can be reduced to

[c1(a2b3 +a3b2)− c2(a1b3 +a3b1)]x3

+[−2a3(b1c1 −b2c2)+ c2(a2b3 +a3b2)
+c1(a1b3 +a3b1)]x2

+[−2a3(b1c2 −b2c1)+ c1(a2b3 −a3b2)
−c2(a1b3 −a3b1)]x

+[c2(a2b3 −a3b2)+ c1(a1b3 −a3b1)] = 0 (18)

Assume that

c1(a2b3 +a3b2)− c2(a1b3 +a3b1) �= 0

Then equation (18) has a real root (see [6], [7], [8])

x =
3

√√
b2

4
+

a3

27
− b

2
− 3

√√
b2

4
+

a3

27
+

b
2
− f

3
(19)

where

a = g− f 2

3
, b =

2 f 3

27
− f g

3
+h

f =
−2a3(b1c1 −b2c2)

c1(a2b3 +a3b2)− c2(a1b3 +a3b1)

+
c2(a2b3 +a3b2)

c1(a2b3 +a3b2)− c2(a1b3 +a3b1)

+
c1(a1b3 +a3b1)

c1(a2b3 +a3b2)− c2(a1b3 +a3b1)

g =
−2a3(b1c2 −b2c1)

c1(a2b3 +a3b2)− c2(a1b3 +a3b1)

+
c1(a2b3 −a3b2)

c1(a2b3 +a3b2)− c2(a1b3 +a3b1)

+
−c2(a1b3 −a3b1)

c1(a2b3 +a3b2)− c2(a1b3 +a3b1)

h =
c2(a2b3 −a3b2)+ c1(a1b3 −a3b1)
c1(a2b3 +a3b2)− c2(a1b3 +a3b1)

By (16) and (19) we finally obtain

θ = 2arctanx.

4 Conclusions

The rotational dynamic stereo model is a common
model in 3D object reconstruction and object’s position
analysis in world coordinates. We proved that the
rotation angle is not necessary to be known. This
result is important, for the algorithm on page 209 in

Figure 2: Left is the original image of a golf head.
Right is the reconstructed result in 3D.

[1], which assumes that the rotation angle is known.
We provided details for calculating rotation angle. Our
results are illustrated in Fig.2. Here a golf head was
reconstructed by placing it on a turntable.
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A Proof of Theorem 2.1.

From equation (5), we have

RT · (Z′
k ·E ′−T )−Tc = Rθ · (RT · (Zk ·E −T )−Tc)(20)

The left hand side of equation (20) equals to

⎡
⎣

r1 r4 r7
r2 r5 r8
r3 r6 r9

⎤
⎦
⎛
⎜⎝Z′

k

⎡
⎢⎣

xu2
f

yu2
f
1

⎤
⎥⎦−

⎡
⎣

Tx
Ty
Tz

⎤
⎦
⎞
⎟⎠−

⎡
⎣

Xc
0
Zc

⎤
⎦
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=

⎡
⎣

r1 r4 r7
r2 r5 r8
r3 r6 r9

⎤
⎦
⎛
⎝Z′

k

⎡
⎣

e′1
e′2
1

⎤
⎦−

⎡
⎣

Tx
Ty
Tz

⎤
⎦
⎞
⎠−

⎡
⎣

Xc
0
Zc

⎤
⎦

=

⎡
⎣

a′1Z′
k +b′1

a′2Z′
k +b′2

a′3Z′
k +b′3

⎤
⎦ . (21)

The right hand side of equation (20) equals to

Rθ

⎡
⎣

r1 r4 r7
r2 r5 r8
r3 r6 r9

⎤
⎦
⎛
⎜⎝Zk

⎡
⎢⎣

xu1
f

yu1
f
1

⎤
⎥⎦−

⎡
⎣

Tx
Ty
Tz

⎤
⎦
⎞
⎟⎠

– Rθ

⎡
⎣

Xc
0
Zc

⎤
⎦

= Rθ

⎡
⎣

r1 r4 r7
r2 r5 r8
r3 r6 r9

⎤
⎦
⎛
⎝Zk

⎡
⎣

e1
e2
1

⎤
⎦−

⎡
⎣

Tx
Ty
Tz

⎤
⎦
⎞
⎠

– Rθ

⎡
⎣

Xc
0
Zc

⎤
⎦

= Rθ

⎡
⎣

a1Zk +b1
a2Zk +b2
a3Zk +b3

⎤
⎦ . (22)

From equation (22) it follows that the right hand side
of equation (20) equals to

⎡
⎣

cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎤
⎦
⎡
⎣

a1Zk +b1
a2Zk +b2
a3Zk +b3

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

cosθ · (a1Zk +b1)+
sinθ · (a3Zk +b3)

a2Zk +b2
(−sinθ) · (a1Zk +b1)+

cosθ · (a3Zk +b3)

⎤
⎥⎥⎥⎥⎦

. (23)

From (21) and (23), we have

cosθ · (a1Zk +b1)+ sinθ · (a3Zk +b3)
= a′1Z′

k +b′1,
(24)

a2Zk +b2 = a′2Z′
k +b′2, and (25)

(−sinθ) · (a1Zk +b1)+ cosθ · (a3Zk +b3)
= a′3Z′

k +b′3.
(26)

From equation (25) and note that b2 = b′2, we obtain

a2Zk = a′2Z′
k. (27)

From equation (10), it follows that

a′1Z′
k +b′1 = cosθ · (a1Zk +b1)+ sinθ · (a3Zk +b3). (28)

From equation (24), it follows that

a′3Z′
k +b′3 = (−sinθ) · (a1Zk +b1)+ cosθ · (a3Zk +b3). (29)

Squaring equations (28) and (29), we have

(a′1Z′
k +b′1)

2 +(a′3Z′
k +b′3)

2

= [cosθ · (a1Zk +b1)+ sinθ · (a3Zk +b3)]2

+[(-sinθ) · (a1Zk +b1)+ cosθ · (a3Zk +b3)]2

(30)

Now the left hand side of equation (30) equals to

(a′21 +a′23 )Z′2
k +2(a′1b′1 +a′3b′3)Z

′
k +(b′21 +b′23 )

Since

b′1 = b1 and b′3 = b3,

then the left hand side of equation (31) equals to

(a′21 +a′23 )Z′2
k +2(a′1b′1 +a′3b′3)Z

′
k +(b2

1 +b2
3) (31)

And the right hand side of (31) equals to

= (a1Zk +b1)2(cos2 θ + sin2 θ)
+(a3Zk +b3)2(sin2 θ + cos2 θ)
+2cosθ · (a1Zk +b1) · sinθ · (a3Zk +b3)
−2cosθ · (a1Zk +b1) · sinθ · (a3Zk +b3)

= (a2
1 +a2

3)Z
2
k +2(a1b1 +a3b3)Zk +(b2

1 +b2
3)

(32)

From (31) and (32), we have

(a′21 +a′23 )Z′2
k +2(a′1b′1 +a′3b′3)Z

′
k

= (a2
1 +a2

3)Z
2
k +2(a1b1 +a3b3)Zk.

(33)
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We combine equation (27) with the second condition in
the theorem. It follows that

Z′
k =

a2

a′2
Zk

= k′Zk, where k′ =
a2

a′2
. (34)

From equation (33), we have

[(a2
1 +a2

3)− k′2(a′21 +a′23 )]Z2
k +

2[(a1b1 +a3b3)− k′(a′1b1 +a′3b3)]Zk = 0.

From the first condition in the theorem it follows that

Zk �= 0.

In accordance with the third condition in the theorem:

a2
1 +a2

3 − k′2(a′21 +a′23 ) �= 0.

So

Zk =
−2[(a1b1 +a3b3)− k′(a′1b1 +a′3b3)]

(a2
1 +a2

3)− k′2(a′21 +a′23 )
.

Or

Zk =
2[−(a1b1 +a3b3)+ k′(a′1b1 +a′3b3)]

(a2
1 +a2

3)− k′2(a′21 +a′23 )
.

This together with equation (34), it follows that Z ′
k can

be calculated. Our theorem is now proved. QED.
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