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Abstract
This paper presents a new method of articulated structure and motion analysis from monocular perspective images.
An articulated object is modeled as a kinematic chain consisting of joints and links, and its joint structure is
estimated within a scale factor using the connection relationship of two links over two images. Then, twists and
exponential maps in robotic manipulation are employed to represent the motion of each link, including the general
motion of the base link and the rotation of other links around their joints. Finally, constraints from image point
correspondences, which is similar to that of the essential matrix in rigid motion, are used to estimate the motion.
Simulations and experiments on real images show the correctness and efficiency of the algorithm.
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1 Introduction

Articulated structure and motion analysis is challeng-
ing due to its non-rigid nature, self-occlusion, variable
appearance, high degree of freedom, and so on. Model
based approaches are able to overcome these problems
to a great extent, which have been explored by many
researchers[1][2][3]. However, model acquisition and
initialization are relatively under-investigated for artic-
ulated objects, especially for the case of single camera
systems, which are usually performed manually by the
user.

In analysis of articulated motion, it is important to au-
tomatically build articulated models from visual data
directly, in which the first and most important step is to
locate the joint positions of articulated objects. After
the joint positions are determined, the kinematic chain
of the object is obtained by connecting the joints, and
a model can be fleshed out from the chain. Thus, we
only need to estimate the joint angle of each link in the
model based motion and pose tracking. Although com-
mercial devices for motion capture or joint localization
have been available, they are based on electromechan-
ical or electromagnetic sensors [4] and optical retrore-
flective markers [5]. They are intrusive and uncomfort-
able for applications. Krahnstoever et al. [6] use 2D
affine transform obtained from the motion segmenta-
tion to estimate the joint position. Iiyama et al. [7] ex-
tract rigid parts and the rigid motion parameters using
3D volume data under the constraint of rigid transfor-
mation, then estimates the joint points from the motion
parameters. The full vision-based joint localization and
estimation is still need to be investigated.

In subsequent motion tracking after modeling the ob-
served object, most work assume that the initial state of
the object is known, such as a special start pose. For ex-
ample, in [8], all joint angles of the initial model are at
zero degrees; Bregler and Malik [9] conduct articulated
motion tracking based on an initial pose and angular
configuration of the first frame. Such initialization is
troublesome and often not exact. Covell et al. [10] con-
duct articulated-pose estimation using brightness and
depth constancy constraints, but they assume depth in-
formation is available from either stereo cameras or
other sensors.

In this paper, we propose an automatic model acquisi-
tion and initialization scheme. Using two frames from
the image sequence, the joint positions of the articu-
lated object and its initial pose are estimated. With a
model of kinematic chain in robotics, we describe the
motion of an articulated object by twists and exponen-
tial maps [9]. Although twists and exponential maps
have been used in [9], it relates the image motion with
3D model motion and is a differential method suitable
for very small motion between consecutive images. But
our work can deal with large frame-to-frame motion,
since we use image point correspondences to constrain
the motion parameters.

In our method, the initial configuration estimation
and kinematic chain representation greatly decrease
the number of motion parameters for subsequent
images, and it becomes much easier to estimate
articulated motion. Furthermore, the motion of each
link is correlated through joints. This correlation
demonstrates the characteristics of articulated motion,
making the complexity of the problem decreased and
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Figure 1: A kinematic chain for a basic articulated
object, with a base link and three extended links.

the robustness of motion estimation improved. Our
method gains a great advantage over the articulated
motion estimation that first partition the object into
rigid components and then estimate the motion of each
subpart respectively, which ignores the very useful
information provided by the interdependencies of
articulated components. It is also easy and cheap since
we use a single camera system and no sensors are
required.

2 Articulated Object Model and Sys-
tem Settings

Generally, articulated objects consist of kinematic
chains, connected to a base link. In human models, we
may regard the torso as the base link and four limbs as
connected kinematic chains[3][11]. In hand model, the
palm is regarded as base link and its five fingers as the
extended kinematic chains [8]. In [12], a connecting
tree with a torso as foot node is used to describe the
structural knowledge about human body. A person is
represented by a cardboard model consisting of a set
of connected planar patches in [13]. Therefore, in this
paper we will mainly focus on the joint positions and
motion estimation of an open kinematic chain such as
that shown in Fig.1.

One DOF revolute joint is the simplest joint between
two connected links, which allows rotation motion
about a single axis. Because of its simplicity of
mechanical structure, revolute joint is the joint
most commonly used in robotic manipulation. A
combination of two or three revolute joints with
different axes of rotation can model high DOF joints.
In this paper, we will concentrate on the one DOF
revolute joints.

We suppose that a stationary pinhole camera is observ-
ing a moving articulated object. The 3D world coordi-
nate system is chosen to be fixed on the camera with
the origin coinciding with the center of the camera and
the z-axis coinciding with the optical axis and pointing
to the front of the camera. The image plane is located
at z = f , the focal length of the camera, with its coor-
dinates axes X and Y parallel to the axes x and y of the
3D world coordinates, respectively. Then according to
perspective projection, we have p = z

f P, i.e.,

(x,y,z)T =
z
f
(X ,Y, f )T (1)

where (x,y,z) is the world coordinates of a 3D point p,
and (X ,Y ) is the coordinates of its correspondent image
point P in the image plane.

3 Articulated Motion Equations Over
Two Frames

For an articulated object with two links, we call the first
link as base link, denoted by link0, and the other link
by link1; the joint j1 between link0 and link1 is a one
DOF revolute joint. Since the two links are connected
together by a joint, their motion are not independent.
We explain their motion as follows: first, link0 and
link1 rotate around the joint j1 to have their respective
after-motion orientations, and then translate together to
the destination position. As a result, the joint j1 which
is on both link0 and link1 satisfies the motion of both
links. We have the following motion equations,

p′0 = R0(p0 − j1)+ j′1 (2)

p′1 = R1(p1 − j1)+ j′1 (3)

where R0,R1 are rotation matrices of link0 and link1
respectively, p0 ↔ p′0 is point correspondence on link0,
p1 ↔ p′1 is point correspondence on link1. We should
be clear that R1 is the rotation of link1 in the world co-
ordinates, not the rotation relative to link0. From (2)(3),
we see that the motions of the two links are correlated
with each other by the joint. This correlation plays
an important role in articulated structure and motion
analysis, and will be used to estimate the joint in our
work.

4 Initial Configuration Estimation

In the following, we mainly consider the estimation of
the joint between link0 and link1. For the joint between
linki and linki+1 (i = 1, · · · ,N), we can deal with in a
similar way.

4.1 Constraints from Image Point Corre-
spondences

In a similar way to derive the well-known essential
matrix [14] equation in rigid motion estimation,
pre-crossing both sides of Eq.(2) by j′1 −R0 j1 and then
pre-multiplying by p′T0 , we can derive

p′T0 [( j′1 −R0 j1)×R0 p0] = 0 (4)

In perspective projection, 3D point p and its correspon-
dent image P have the relationship of (1). Therefore,
we derive an essential constraint equation about the
motion and joint parameters
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Figure 2: Ambiguities of joint position

P′T
0 E0P0 = 0 (5)

where

E0 = [ j′1]×R0 −R0[ j1]× (6)

and [·]× is a mapping from a 3-dimensional vector to a
3 by 3 skew symmetric matrix

[(x,y,z)T ]× =

⎡
⎣ 0 −z y

z 0 −x
−y x 0

⎤
⎦ (7)

Similarly, we can get the constraint on motion parame-
ters for link1

P′T
1 E1P1 = 0 (8)

with E1 = [ j′1]×R1 −R1[ j1]×. Therefore, each pair of
image point correspondence provides a constraint of
(5) or (8). From a set of image point correspondences,
we can get a set of such equations. Solving these
equations, we might expect to estimate the motion
parameters R0,R1 over the two image frames and the
joint position j1 between link0 and link1. However, for
one DOF revolute joint, the solution for j1 satisfying
Eqs.(2) is not unique. In order to get a solution of the
joint position from Eqs.(5) and (8), more constraints
should be enforced.

4.2 Constraints on Joint Position

It is easy to see that any point lying on the joint axis
satisfies Eqs.(2)(5)(8) because of the one DOF attribute
of the revolute joint. We call this position ambiguity of
revolute joint. It should also be noticed that the depth
information of an object is lost in monocular images.
A 3D point p and a point cp have the same image in
perspective projection if c is a positive constant. There-
fore we can only recover the structure of an object from
images up to a scale factor to its ground truth. It can
be seen from Eq.(5) or (8) that the equation keeps un-
changed if j1 and j′1 are multiplied by a same factor.
We call this scale ambiguity.

The position ambiguity and scale ambiguity result in
that any point lying on the projection plane Π1 of the
joint axis can be a solution of Eqs.(5) and (8), see Fig.2.
To avoid the scale ambiguity, we set the depth of the
joint point j1 as a positive value (the object is in front
of the camera)

j1z = z0 (9)

In practical application, we may set z0 as the approxi-
mate value of the distance of the object away from the
camera.

We see that even if we have set the z coordinate of j1 as
a constant, any point on the intersection line between
the projection plane Π1 and the plane of z = z0 can be
the joint point. So we put another constraint on j1

j2
1x + j2

1y = c (10)

where c is a pre-set positive constant. In theory, c in
(10) can be set as any positive value which is larger
than the shortest distance between the z axis and the
intersection line between Π1 and the plane of z = z0.
Otherwise, when c is set too small, there is no point
on the plane Π1 which satisfies the conditions (9) and
(10).

4.3 Degeneration of the Estimation

Eq.(5) and Eq.(8) are homogeneous equations about E0
and E1. If E0 = 0 and E1 = 0, Eqs.(5) and (8) become
identical equations, which should be avoided. When
E0 = 0, we can get j′1 = R0 j1 from its definition for-
mula (6), leading to j′1 ×R0 j1 = 0. Therefore, in order
to avoid this degeneration, we should put a constraint
of

j′1 ×R0 j1 �= 0 (11)

Constraint (11) is difficult to deal with in numerical
optimization. So, we change the inequality constraint
(11) as the following equality one

1.0− t2

σ2 + t2 = 0 (12)

where t = | j′1 ×R0 j1|. We find that the function

f (x) = 1.0− x2

σ2 + x2 (13)

gets the maximum when x = 0 and is almost zero when
x is much larger than σ . If we set the parameter σ
very small, f (x) likes an impulse function, but it is a
continuous, differentiable function. Similarly, we use
the function (13) to avoid the degeneration case of E1 =
0.

Palmerston North, November 2003 127



4.4 Estimate Joint Position

Now, we can estimate the joint position j1 and the ro-
tation matrices R0,R1 over two image views by solving
the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P′T
0i ([ j′1]×R0 −R0[ j1]×)P0i = 0

P′T
1i ([ j′1]×R1 −R1[ j1]×)P1i = 0

j1z − z0 = 0
j2
1x + j2

1y − c = 0

1.0− | j′1×R0 j1|2
σ2+| j′1×R0 j1|2

= 0

1.0− | j′1×R1 j1|2
σ2+| j′1×R1 j1|2

= 0

(14)

where i = 1, · · · ,m and m is the number of feature points
on each link. Since each feature point correspondence
provides one constraint about the joint and motion pa-
rameters, theoretically we need five feature points on
each link to solve the problem, i.e., m = 5. But, in
order to decrease the probability of converging to a
local minimum and make the algorithm be robust, we
use more available points in practical application.

4.5 Estimate Joint Axis

The direction of joint axis �n1 of link1, still denoted by
�n1, can be computed from the rotation matrices R0 and
R1 already obtained. In fact, �n1 is the rotation axis of
link1 when the base link link0 keeps stationary. We can
explain the articulated motion of the two links in the
following way: firstly link0 moves, with link1 moving
rigidly together with it; then link0 keeps still and link1
makes a rotation around the joint of link1 to reach its
final position. In terms of R0,R1, the motion can be
considered as that the joint axis�n1 is first transferred to
R0�n1 after link0’s motion, then link1 carries out a rel-
ative rotation R10 = R1R−1

0 around the joint axis R0�n1.
So, the rotation axis of rotation matrix R10 is R0�n1. As
a result, we can compute the joint axis �n1 of link1 as
follows

�n1 = R−1
0 axis(R10) (15)

where axis(R) means the direction of rotation axis of
matrix R, which can be easily computed from R.

4.6 Scale Consistency

Using the similar way of estimating the joint of link1,
we can estimate the joint position ji and axis �ni of
linki(i = 2, · · · ,N). Each estimated joint position
ji has been determined upto a scale factor to its
correspondent ground truth, since the absolute depth
information is lost in monocular images. However,
all the estimated joints should have the same scale
factor to their ground truth because of the articulation
constraints.

Since j2 is also a point on link1, it satisfies the motion
of link1, i.e., we have

j′2 = R1( j2 − j1)+ j′1 (16)

Therefore, for the estimated joint points ĵ1, ĵ′1 and
ĵ2, ĵ′2, if

s| ĵ′2 −R1 ĵ2| = | ĵ1 −R1 ĵ1| (17)

scale ĵ2 by s: ĵ2 ⇐ s ĵ2, then ĵ2 will have a same scale
as ĵ1 to the joints of the ground truth. We can scale the
other joint point ji in a similar way.

5 Articulated Motion Estimation

5.1 Twists and Exponential Maps for
Kinematic Chain

The one DOF revolute joint in kinematic chains can be
represented by a twist [15]

ξ =
[ −�n× j

�n

]
(18)

where�n is the unit direction along the axis of the revo-
lute joint and j is a point on the axis. Then the motion
of the link, a rotation of angle θ around this joint, can
be written as an exponential map

G = eξ̂ θ (19)

with

ξ̂ =
[

[�n]× −�n× j
0 0

]
(20)

where ξ̂ is a 4 × 4 matrix with the upper 3 × 3 sub-
matrix as a skew-symmetric matrix. The computed G
must be a 4×4 matrix in the form of

G =
[

R T
0 1

]
(21)

with its upper 3× 3 sub-matrix R as a rotation matrix
and T is a 3D vector. Thus G is in fact a rigid body
motion transformation in ℜ3 using homogeneous co-
ordinates, describing the motion of the link in world
coordinates when other links keep stationary.

The motion of each link except the base link can be
represented by its rotation angle. Suppose the motion
of the base link link0 is expressed by the transformation

G0, and the motion of link1 relative to link0 is eξ̂1θ1 .
The twist ξ1 can be computed from the estimated joint
axis �n1 and the joint position j1, θ1 is the to be solved
rotation angle. Then the overall motion G1 of link1 is a
composite of the motion of the base link and its motion
relative to link0
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G1 = G0eξ̂1θ1 (22)

Similarly, the motion transformation Gi of linki is the
product of exponential maps

Gi = G0eξ̂1θ1 · · ·eξ̂iθi (23)

eξ̂iθi is the motion of linki relative to its previous con-
nected link linki−1, which is in fact the motion transfor-
mation of linki when all the other links are kept station-
ary. The product of exponential maps, Gi, must have
the same form as G in (21).

5.2 Estimation of Articulated Motion

Using the motion transformation Gi of linki, we have

p̄′i = Gi p̄i =
[

Ri Ti
0 1

]
p̄i (24)

where p̄i and p̄′i are points on linki before and after
motion represented in homogeneous coordinates p̄i =
(pT

i 1)T . Since Gi has the form of (21), we can get the
same constraint of essential matrix in rigid motion for
each link, i.e.,

P′T
i Ei(G0,θ1,θ2, · · · ,θi)Pi = 0 (25)

where Pi ↔ P′
i is image point correspondence on linki,

Ei is computed from Gi by Ei = Ti ×Ri. And, Ei is the
function of motion parameters G0 of link0 and rotation
angle θk(k = 1, · · · , i) of linkk.

Provided with image point correspondences on each
link between two images, we have the following con-
straints on motion parameters G0 and θi

⎧⎪⎪⎨
⎪⎪⎩

P′T
0 E0(G0)P0 = 0

P′T
1 E1(G0,θ1)P1 = 0
· · · · · ·
P′T

N EN(G0,θ1,θ2, · · · ,θN)PN = 0

(26)

There are six independent parameters in G0 for
the base link and only one θi for rotation angle of
linki,i = 1, · · · ,N. As a result, for an articulated
object with N + 1 components, we need only 6 + N
parameters to represent the motion, which is much less
than 6(N + 1) for the case of treating each component
independently. Since each image point provide one
constraint on the motion parameters, totally 6 + N
points are necessary to solve the problem in theory. If
6 points are available on the base link, only one point
on each link is necessary. The hard occlusion problem
in articulated motion analysis is overcome to some
extent because of the requirement for a few of feature
points in our work.
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Figure 3: (a)The ground truth of the initial pose of the
articulated links; (b) The estimated initial pose.

Another advantage of our work is that the motion
parameters of links are interdependent. Such
interdependency provides powerful information for
estimating the motion parameters efficiently and
robustly, because more constraints are available
for each parameter. For example, the motion G0
of link0 is included in all the constraint equations
of other links; the angle θi of linki is related with
linkk(k = i + 1, · · · ,N). Therefore, even there are less
than 6 points available on the base link, we can have
enough constraints on G0 if more points are available
on other links.

6 Experiments

Levenberg-Marquardt optimization method is used to
solve the equation systems involved in the algorithm.

6.1 Simulations

Suppose the feature points of three links of
an articulated object are distributed randomly
within the range [−2.5,−0.8] × [−2.5,−0.8],
[−0.8,0.8] × [−0.8,0.8] and [0.8,2.5] × [0.8,2.5]
respectively. The distance of the object from the
camera ranges from 3.0 to 4.0 units. The points are
projected onto an ideal image plane of 500×500 pixels
with a unit focal length, corresponding to a viewing
angle of about 90◦ and the pixel size of 0.003.

Fifteen points on each link are available for the esti-
mation of joint structure which are corrupted with uni-
form distributed noise in the range of [-0.0045, 0.0045],
equivalent to three pixel noise. The estimated result is
illustrated in Fig.3. In the subsequent motion estima-
tion, 8 points on each link corrupted by 5 pixels noise
are used. The result is shown in Fig.4.

6.2 Experiments Using Real Scene
Images

We test our algorithm by the images of a robot arm
(See Fig.5), an articulated object with two links in
the experiment. The images are captured by a digital
camera of Nikon COOLPIX5000 with image size
of 2560 × 1920. The camera are calibrated using
the the Calibration Toolbox for Matlab, getting the
focal length of 7.4251mm and the principal point of
(1306.63627,981.94309) in pixels. The feature points
are detected and matched manually for the moment.
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Figure 4: The articulated links of Frame 6 and 8. Left
column is the ground truth pose, right column is the
estimated.

Figure 5: Two images in the experiment

Table 1: The estimated initial configuration
Estimated value Ground truth

axis1 (0.1858,−0.0032,−0.9735)T –
point1 (−2.0860,−0.4022,8.6) –
angle1 37.5104 37.91
axis2 (−0.0149,−0.0091,−0.9998)T –
point2 (-0.0640, 1.5707, 7.5454) –
angle2 30.3473 29.68

Seventeen and eleven feature points on link1 and link2
are respectively used to estimate the joint structure.
The ground truth of the rotation angle of each link is
obtained from the manipulation process of the robot.

The estimated results are shown in Table 1, where
point1 and point2 are the estimated joint positions
of the two links respectively. Then, the rotation
angle of each link between the current frame and the
initial frame is estimated using the estimated initial
configuration. Thirteen and eight feature points are
available on the two links respectively. The results in
Fig.6 show very good performance of the algorithm,
and also verify the initial joint structure estimation of
the object.

7 Conclusion

In this paper, we have proposed a new method of artic-
ulated structure and motion analysis from monocular
perspective images. The characteristic of articulated
motion, i.e., motion correlation among links, is applied
to decrease the complexity of the problem and improve
the robustness.
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Figure 6: Rotation angles over six frames
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