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Abstract 

We previously showed that the shape-from-shading algorithm using Jacobi’s iterative method is promising in 

terms of accuracy and simplicity. In this paper we investigate the effects of approximations of the surface normal 

on the shape estimating process. Specifically the four different simplest approximations are shown to give four 

different reconstruction functions of shape, which are complementary to each other from the viewpoint of the 

contributing region. The previous algorithm is improved by combining the four approximations and by imposing 

appropriate boundary conditions, to estimate more accurate shape.  
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1  Introduction 

Since the pioneering research on shape-from-shading 

by Horn [1], significant studies have been made [2], 

[3]. A large number of papers focus on estimating 

shape from a single shading image. They may be 

classified to local [4], minimization [5], [6], linear [7], 

[8] and propagation [9], [10] approaches. A smaller 

number of papers, on the other hand, focus on the 

estimation from multiple images [11]. 

Minimization approaches are based on minimizing a 

given energy criterion to estimate the shape. Zheng 

and Chellappa [5] introduced, for example, image 

gradient and integrability constraints to obtain fine 

details. Linear approaches linearize the reflectance 

map in tilts or depth. Tsai and Shah [7] linearized it in 

the depth and used the Jacobi iterative technique. We 

generalized their method to enhance its applicability 

and to improve accuracy [12]. Propagation 

approaches obtain a shape starting from some initial 

curve at the brightest or darkest points. Kimmel et al. 

show that good shape reconstruction is possible with 

boundary conditions [10]. As for the estimation using 

multiple images, Woodham shows that using three 

shading images can uniquely determine the surface 

normal map [13]. Several algorithms have been 

reported to convert the map to the corresponding 

depth map [11], but they appear successful to a 

certain degree.  

In this paper we investigate the effects of the surface 

normal approximation on the estimation process and 

the resulting shapes, where we specifically compare 

four different simplest approximations. We show that 

they give rise to four different and asymmetrical 

reconstruction functions of shape and that they could 

be complementary to each other since they share 

none of the regions. Taking advantage of the 

properties, the previous algorithm is improved so as 

to reconstruct shapes with multiple approximations 

and average them during the iteration. We also show 

that the improvement makes it possible to effectively 

impose appropriate boundary conditions. 

2 Basic Iterative Relations 

The object is illuminated from a single direction to 

obtain its shading image. Given an appropriate 

reflectance map R(p,q), it may be equal to the image 

I(x,y):

),(),( yxIqpR = (1)

where x,y=1,…,N, and the image is normalized to 

unity. Let P and S be the surface normal of the depth 

z(x,y) of the object and the illuminant vector, 

respectively: 

( ) 11,, 22 ++= qpqp
T

P (2)

( ) 11,, 22 ++= tsts
T

S (3)

where p and q are given by -∂z/∂x and -∂z/∂y,

respectively. Then, for the Lambertian surface, the 

reflectance function, normalized by the albedo, is 

given by their scalar product:  
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where we used the first one in the previous paper. In 

either case the R can be regarded to be a function of 

three z variables, for example, z(x,y), z(x-1,y) and

z(x,y-1) for the case of Eq. (5a). Then, first, defining 

f(x,y) as 

( ) ( ) ( )qpRyxIyxf ,,, −≡ (6)

and applying the Jacobi’s iterative method to f(x,y), 

we obtain the following relations corresponding to 

the approximations in Eq. (5): 
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where n is the number of iterations, fx,y ≡ f(x,y) and zx,y 

≡ z(x,y). The four relations can be rewritten in matrix 

form as 

)( )1()()1()1( −−− −=− nnn

a

n

a zzgf ,a=1,…,4, n=1,2,… (8)

where fa and z are N2-elements column vectors of

f(x,y) and z(x,y), respectively, and ga, a=1 to 4, which 
correspond to Eqs. (7a) to (7d), respectively, are 

N2xN2-elements matrices made of ∂f(x,y)/∂z(x,y), 

∂f(x,y)/∂z(x-1,y), ∂f(x,y)/∂z(x+1,y), ∂f(x,y)/∂z(x,y-1) 

and/or ∂f(x,y)/∂z(x,y+1). Eq. (8) can be rewritten for 

z
(n) as 

( ) )1(1)1()1()( −−−− −= n

a

n

a

nn fgzz ,a=1,…,4, n=1,2,… (9)

That is, the shape may be estimated iteratively using 

one of the relations in Eq. (9), typically beginning 
with null values z(0)=0. In this case, since ga, a=1 to 4, 

are different, we may expect the resulting shapes to 

be different from each other, as will be described in 

the following section. 

3 Four Reconstruction Functions 

We set the elements of the two vectors of z={zi} and 

f={fi} as zx+Ny=z(x,y) and fx+Ny=f(x,y), respectively. 
The top left parts of the four matrices ga, {gi,j}, i=1 to 

2N, j=1 to 2N, are given in Eqs. (10a) to (10d), to 

show that the four different approximations give four 

matrices different from each other. They are also 

schematically illustrated on the left in Fig. 1, where 

non-zero elements exist along the three slant lines. 
Their inverse matrices are illustrated in the middle, 

where non-zero elements exist in the shaded regions. 

Then, the elements, which act as weights on the 

elements of f in the integration to get depth values, 

are shown to be in the shaded regions on the (x,y)

plane on the right of Fig. 1. It is clearly seen that 
those four are completely different in region. That is, 

the four approximations result in four different 

reconstruction functions of shape. 
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Let us check the distribution of the g
-1 around the 

reconstruction point of shape. Examples are shown in 

Fig. 2 for the approximation of Eq. (5a). These show 
that the patterns, or the reconstruction functions, have 

sharp peaks at the reconstruction point, and that their 

monotonically decreasing lobes are significant along 

the directions of tilt angles of the illuminant vector. 

The functions may in general be expected to be 

isotropic, but those in Fig. 2 are clearly an-isotropic. 
We can also observe that the functions are invariable 

with the slant angle, that the function in the range of 

180<τ<270 is the same as that for τ-180 but it has an 
opposite sign, and that the functions are hard to get in 

the range of 90<τ<180 or 270<τ<360 due to that the 
inverse matrix of g is not available.  

4 Algorithm 

From the properties of the reconstruction functions, 

when the tilt angle of S lies in 0<τ<90 or 180< τ<270, 
two approximations, Eqs. (5a) and (5b), may be used, 

while when it lies in 90<τ<180 or 270<τ<360 the 
other two approximations, Eqs. (5c) and (5d), may be 

used. Examples of available two functions of g-1 are 
illustrated in Fig. 3 for two illuminant vectors, S =

(5,5,7) and (-5,5,7).

1…N…2N……….N 2 1…N…2N…….....N 2 1…………………N

(x, y)

(a) p(x,y)=z(x-1,y)-z(x,y), q(x,y)=z(x,y-1)-z(x,y)

(x, y)

(b) p(x,y)=z(x,y)-z(x+1,y), q(x,y)=z(x,y)-z(x,y+1)

(x, y)

(c) p(x,y)=z(x-1,y)-z(x,y), q(x,y)=z(x,y)-z(x,y+1)

(x, y)

(d) p(x,y)=z(x,y)-z(x+1,y), q(x,y)=z(x,y-1)-z(x,y)

Fig. 1 Schematics of matrices of g (left column), their 

inverse matrices (middle) and integrating regions to 

get the depth value at (x,y) for the four 

approximations of p and q.

(a) τ = 15 (b) τ = 30 

(d) τ = 60 (e) τ = 75 

Fig. 2 Distributions of g
-1 for four tilt angles of the 

illuminant vector, where Eq. (5a) is used as the 

approximation, and the parameters used are (x,y) = 

(25,25), n=1, N=50 and σ=45 deg. 
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Use of Eq. (5a) Use of Eq. (5b) 

(a) τ = 45 deg. 

Use of Eq. (5c) Use of Eq. (5d) 

(b) τ = 135 deg. 

Fig. 3 Available two distributions of g
-1 for (a) S=

(5,5,7) and (b) S=(-5,5,7), where n=1, (x,y)=(25,25), 

N=50 and σ=45 deg. 

This means that it becomes possible to reconstruct 

shapes regardless of the tilt angle of the S. This also 

implies that using more than a single approximation 

may be useful to get better shapes. That is, distortions 
may accumulate through the integration process, but 

they may be reduced through averaging two shapes 

available. For this purpose Eq. (9) is modified as 

follows: 

We estimate in each iteration two shapes using the 

two approximations and average them using 
appropriate weights as: 

)( )1()()1()1( −−− −=− n

m

n

a

n

a

n

a D zzgf ,a=1,2, n=1,2,… (11)

)(

22

)(

11

)( nnn

m ww zzz += , n=1,2,… (12)

where D≥1 is a de-accelerating factor to make the 

shape change smoothly. In the case of τ = 45 deg, 
taking into account the functions of g-1 in Fig. 3, the 

shape z1 may be more accurate for smaller value of 
x+y and so may be z2 for larger value of x+y. So, w1

and w2 may be given by 

)1(2

2
1),(1 −

−+−=
N

yx
yxw ,

)1(2

2
),(2 −

−+=
N

yx
yxw (13)

In general, weights that vary along the direction of τ
may be appropriate.  

In the previous algorithm the shape ends up having 

significant accumulated distortions along some of the 

boundaries. This makes the imposition of some 

boundary conditions inappropriate and unworkable. 

On the other hand, in the improved algorithm the 

obtainable shape may have much reduced distortions 
along the boundaries. This may make the imposition 

workable. In this paper we impose z=0 for the 

boundary with a constant image intensity, p=0 for the 

vertical boundary with varying image, and q=0 for 

the horizontal boundary with varying image intensity.  

5 Computer Experiments 

Four shapes were used to investigate the method. 
They are a semi-sphere, a computer mouse, a ring 

with a center part, and the Mozart sculpture, among 

which the shape of the computer mouse was 

measured with a laser range scanner. 50x50 pixels 

shading images of them were computationally 

generated assuming that the surfaces are Lambertian.

First the method being presented is compared with a 

reconstruction method that uses three shading images 

of different S’s, to explain how our method works. In 

the latter method, local surface normals of the shape 

are determined from three images of the semi-sphere 

for S = (-5,-5,7), (5,-5,7) and (0,1,1), and they are 
integrated from one of the four corners, where no 

boundary conditions are applied. In our method, one 

of the two shading images for S = (-5,-5,7) and 

(5,-5,7) is used and the shape is estimated using the 

knowledge of the illuminant vector and the 

appropriate approximation, in which we give p=0 or 
q=0 along two of the four boundaries where they 

cannot be calculated from z(x,y). The results in Fig. 4 

show that the shapes obtained by our method are 

relatively close to those by the method using the three 

S’s. So, averaging the two available shapes together 
with the imposition of the appropriate boundary 

condition appears to be crucial to get good shapes in 

our method. Fig. 4 also shows that the shape 

reconstructed using a single approximation is very 

different from the original one along some of the 

boundaries. In this case imposing the appropriate 
boundary condition on those boundaries is 

inappropriate. 

The improved algorithm was tested using the images, 

which are summarized in Fig. 5. The boundary 

conditions used are z=0 along all the four edge lines 

for the images of semi-sphere, mouse and ring, and a 
combination of q=0 for the bottom edge line and z=0

for the other three lines for the image of Mozart. The 

iteration tends to converge before divergence which 

tends to occur when the minimal value of the 

eigenvalues, ∂fx,y/∂zx,y, is less than 0.1. So the 
iteration was stopped when the change in shape with 

the number of iterations takes a local minimum or 
when the minimal value dips below 0.1.  

The results in Fig. 5, where the original and estimated 

shapes are compared, show that the obtained shapes, 

on the whole, are relatively in good agreement with 

the original ones. We notice there that the estimated 

shapes still have moderate distortions and that they 
appear more serious for the Mozart image than for 

the others, where the Mozart image has one boundary 

where its image varies. We also notice that the 

method being presented lacks spatial resolution a 

little, that different shading images of the same object 
give rise to somewhat different shapes, that there 
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remain wave-like shape components, that is, the flat 

shape parts are not always reconstructed flat, and that 
there exist strong robustness to noise in the image 

due to the integration and averaging processes in the 

method.  

6 Conclusions 

We made clear on the shape from shading algorithm 

using Jacobi’s iterative method that the four different 

simplest approximations for the surface normal of the 
shape give four different and asymmetrical 

reconstruction functions of shape, and we improved 

the previous algorithm so as to reconstruct shapes 

with multiple approximations and so as to impose 

appropriate boundary conditions, to get more 

accurate shapes and enhance the applicability. The 
improved method was verified by computer 

experiments. 
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(a) 3 S’s, from bottom-left (b) S=(-5,-5,7), Eq. (5a)

(c) 3 S’s, from top-right (d) S=(-5,-5,7), Eq. (5b)

(e) 3 S’s, from bottom-right (f) S=(5,-5,7), Eq. (5c)

(g) 3 S’s, from top-left (i) S=(5,-5,7), Eq. (5d)

Fig. 4 Comparison of shapes obtained by our method 
using a single approximation (right) with those 

obtained by integrating local surface normal starting 

from one of the four corners for the case of using 

three shading images (left). 
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Object shape Shading image 
Image-mapped  

original shape  
Estimated shape 

Image-mapped  

estimated shape 

Semi-sphere 

(σ,τ)=(65,39)

Semi-sphere 

(45,45), 5% 
Gaussian noise 

Computer mouse 

(45,45)

Mozart sculpture 

(45,45)

Mozart sculpture 

(-135,59) 

Ring with a center part 

(74,45)

Fig. 5 Reconstructed shapes from synthesized shading images with the improved algorithm. The slant and tilt 

angles, σ are τ, respectively, are in degrees, the two texture-mapped shapes of the ring object are viewed from 
the right, and Gaussian noise is added to the shading image of semi-sphere on the second row. 
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