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Abstract
Implicit defined surfaces of scalar fields (isosurfaces) are a common entity in biomedical, scientific and engineering
science. Polygonising an isosurface permits hardware assisted rendering and simplified geometric operations such
as surface analysis and area computation. This paper introduces a novel algorithm for computing isosurfaces for
scalar fields defined over (potentially curvilinear) finite elements which are common in numerical simulations and
physically-based modelling. The advantages of the method are demonstrated by visualising the myocardial strain
in a healthy and a diseased heart.
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1 Introduction

Implicit defined surfaces of scalar fields (isosurfaces)
are common in biomedicine and other sciences. Isosur-
faces impart knowledge about the overall distribution
of a scalar field and can be used to extract anatomical
structures from medical imaging data. The c-isosurface
of a scalar field s is defined as all points x for which
s�x� � c.

Numerous algorithms (so-called polygonisation meth-
ods) have been proposed for the efficient computation
of isosurfaces (e.g., [1, 2, 3, 4]). Interactive display
rates and reduced storage requirements can be achieved
by utilising adaptive methods [5], mesh reduction tech-
niques [6] and multi-resolution meshes [7, 8]. A survey
and analysis of polygonisation methods and optimisa-
tion techniques to achieve faster computation and ren-
dering of isosurfaces is found in [9].

The Marching-Cube algorithm [10] has been one of
the earliest and most popular methods. The algorithm
requires as input a regular grid of sampled field values
and “marches” through the volume cell-by-cell. Each
grid cell has eight sample values at its corners. The
method constructs a tessellation by computing for each
cell the intersection points of the cell’s edges with the
isosurface and by connecting these intersection points
with triangles obtained by a table look-up. The look-
up table contains all configurations which fulfill the
assumption that the isosurface intersects a cell’s edge
at most once. Since there are eight vertices in each
cubic cell and two values, positive and negative, there
are 28 � 256 ways the surface can intersect the cube.

Lorensen and Cline use symmetries to reduce the num-
ber of patterns to 15 which are shown in figure 1 1.
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Figure 1: Triangulated cubes.

The main disadvantage of the algorithm is that some
patterns in figure 1 are topologically ambiguous as
noted by van Gelder and Wilhelms [12]. This may
produce a surface with a hole as pointed out by Düurst
[13] (see figure 2). The literature offers various
solutions to the ambiguity problem [14, 15, 16, 17, 18].
Also in some applications the topology of a biomedical
structure is known in advance and specialised
polygonisation algorithms can be employed to take
this into consideration [19].

In this paper we present a modification of the Marching
Cubes algorithm which can be applied directly to curvi-

1The cases 12 and 15 are reflective with respect to the xy-plane.
This leaves 14 topologically distinct patterns (22 without inversed
patterns) [11].
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Figure 2: A hole in the polygonisation because of a face
ambiguity.

linear finite element domains without requiring that the
field is sampled over the bounding box enclosing the
domain. The resulting algorithm is more precise and
efficient and can take into account the complexity of
the model domain. Furthermore we suggest an efficient
table look-up scheme to resolve ambiguous cube con-
figurations.

2 Finite-Element Geometry

The geometry of a finite element model is described
by a set of nodes and a set of elements, which have
these nodes as vertices. The nodal coordinates are in-
terpolated over an element using interpolation func-
tions. Curvilinear elements can be defined by speci-
fying nodal derivatives.

As an example of a finite element consider the cubic
Hermite-linear Lagrange element in two dimensions
shown in figure 3 (b). We first specify a parent
element, shown in part (a) of the figure, which is
a square in ξ -parameter space. The coordinates ξ i
(0 � ξ1�ξ2 � 1) are called the element or material
coordinates. The value of some variable u (e.g.,
temperature) at the material coordinates ξ is then
specified by interpolating the variables ui linearly in
the given parameter direction. In our example we
assume that additionally derivatives in ξ1-direction�

∂u
∂ξ1

�
i
�i � 1� � � � �4� are specified at the element

nodes. In this case a cubic Hermite interpolation is
performed in that direction.

�

�

��

��

��

��

���

������

��

��

��

���� ��

Figure 3: A cubic Hermite-linear Lagrange finite ele-
ment.

The cubic Hermite-linear Lagrange interpolation of u
over the entire 2D parameter space is then defined by
the tensor products of the interpolation functions in
each parameter direction:
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where
L1�ξ � � 1�ξ , and L2�ξ � � ξ

are the one-dimensional linear Lagrange basis
functions, and

H0
1 �ξ � � 1�3ξ 2�2ξ 3

� H1
1 �ξ � � ξ �ξ �1�2

H0
2 �ξ � � ξ 2�3�2ξ �� H1

2 �ξ � � ξ 2�ξ �1�

are the one-dimensional cubic Hermite basis functions.

In general we can express the interpolation of a variable
as

u�ξ � �∑
i�k

uk
i φ k

i �ξ � (1)

where uk
i are scalar field values and their partial deriva-

tives (if any) at each node and φ k
i are appropriate in-

terpolation functions. Analogously we can compute
for a point in material coordinates ξ the corresponding
world coordinates x by using the isoparametric map

x�ξ � �∑
i�k

xk
i φ k

i �ξ � (2)

where xk
i are the nodal coordinates and the coordinate

curve tangents (if any) at the nodes.

3 A Polygonisation Algorithm for
Curvilinear Finite Element Data

We have developed a polygonisation algorithm which
computes an isosurface in material space. The algo-
rithm divides the cubic parent element of each (poten-
tially curvilinear) finite element into a regular grid of
�n� 1�3 sample values which form n3 cubes in ma-
terial space. The algorithm determines how the sur-
face intersects a cube, then moves to the next cube.
The isosurface intersection is determined by the sign of
the scalar field at the cube’s vertices. Each edge with
vertex values of different sign is assumed to intersect
the isosurface once. The intersection point in material
coordinates is approximated by linearly interpolating
the scalar field values between the vertices.

The surface normals of the isosurface are given by the
field’s gradient function if it is defined and if its use is
appropriate. Otherwise the normals are determined by
first precomputing the material coordinate gradients for
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all grid points using finite differences. For each isosur-
face intersection the ξ -derivative of the scalar field s at
that point is then approximated by linearly interpolat-
ing the gradients at the grid vertices. Finally the surface
normal is given by the gradient in world coordinates
which is

∇s�
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∂ s
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∂ s
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∂ s
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����
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where J�1
�

∂ξi
∂x j

is the inverse of the Jacobian of the

isoparametric mapping (equation 2) and ∇ξ s is the gra-
dient of s with respect to the material coordinates.

3.1 Resolving Face Ambiguities

Some configurations, such as number 4 in figure 1, con-
tain ambiguous faces for which the edge intersection
points can be connected in two different ways shown
in figure 4. Nielson and Hamann [14] achieve a dis-
ambiguation by determining the topology of the bilin-
ear interpolant over a face from the intersection of its
asymptotes. Mackerras shows that this test can be re-
placed by sorting the four intersection points along one
coordinate [20]. The first pair and the last pair of the
sorted points are connected.
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Figure 4: An ambiguous face.

The justification for this result is shown in figure 4.
Assumed the connection in (b) is correct then the scalar
field along the dotted line varies from negative to pos-
itive to negative. However, it can be shown easily that
the bivariate interpolant varies linearly parallel to any
coordinate axis so that this connection of intersection
points represents an impossible topology.

We can derive from the above observation an
alternative test which determines the correct edges
within a face by comparing the products AD and
BC which can be done without computing the
intersection points. However, since the computation
of the intersection points is necessary for creating
the triangles inside a cell and since the intersection
points are hashed for efficiency (see next subsection)
it is most efficient to resolve face ambiguities by
comparing the material coordinates of the intersection
points. Since our application subdivides the material
space we compute and sort the intersection points
along one ξ -coordinate and then compute their world
coordinates for use in the triangle creation step.

The number of possible topologically different trian-
gulations for a pattern from figure 1 depends on its
number of ambiguous faces. As an example consider
the pattern 4, where only the front face is ambiguous.
The two possible triangulations are shown in figure 5.
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Figure 5: Two topologically different triangulations for
an ambiguous pattern.

In general a configuration with k ambiguous faces
has 2k topologically different triangulations. Our
implementation precomputes a table consisting of
all topologically different triangulations using the
algorithm shown in figure 6 which results in a table
with 656 entries.

The table is indexed by first using an 8-bit index for the
main configuration and then using a k-bit index for the
subconfiguration where k is the number of ambiguous
faces of that configuration.

3.2 Vertex and Normal Hashing

Vertices are shared by up to eight cubes and edges by
up to four cubes. Furthermore the edge intersection
points are also required for resolving face ambiguities.
In order to prevent recalculations of values we use
three hash tables. One hash table stores the ξ -
coordinates of a grid point. A second hash table stores
the ξ -coordinate gradient at grid vertices. This is only
necessary if the normal at an intersection point can not
be computed from the gradient of the interpolated field.
A third hash table stores the edge intersection points
and the corresponding normals in world coordinates.

Since a face is shared by two cells one could consider
using another hash table to prevent recomputation of
the correct edge connection for a face. However, com-
paring the intersection point’s ξ -coordinates is faster
than computing the hash function for a cube’s face and
an additional hash table is therefore unnecessary.

3.3 Summary of the Algorithm

The algorithm can be summarized as follows

1. Precalculate a look-up table with all topologically
different triangulations

2. Subdivide the material space into cubic cells.

3. Calculate an 8-bit index for each cube from the
sign of the eight scalar field values at the cube
vertices.
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Figure 6: Algorithm for computing a table with all topologically different triangulations.

4. If the configuration has k ambiguous faces
compute a k bit sub-index by comparing the ξ -
coordinates of the intersection points as explained
in subsection 3.1.

5. Using the index, look up the list of edges forming
triangles from the precalculated table.

6. Using the scalar field values at each edge vertex
linearly interpolate the isosurface intersection in
material coordinates and compute its world coor-
dinates.

7. Compute the normal at an edge vertex using the
field’s gradient function if possible. Otherwise
compute the gradient in material coordinates at
the grid points using finite differences, linearly in-
terpolate the gradients and transform the result to
world coordinates.

Performing the isosurface computation in material
space has the advantage that scalar field values can
be computed directly without performing a multi-
dimensional Newton method or resampling the data.
The resulting isosurface lies smoothly inside the finite
element, i.e., there are few bits of the isosurface
sticking out of the model boundaries and there are
no erroneous results due to sample values which
lie outside the model boundary and for which the
scalar field is undefined. Furthermore the method is
more efficient since only the actual model domain
is subdivided rather than its bounding box in world

coordinates. Finally the computation in material space
is often more precise. For example, if tricubic elements
are used then the linear interpolation used to compute
the intersection points of the cube’s edges with the
isosurface will yield the exact result. In contrast the
computation in world coordinates is exact only if the
elements are cuboidal and if the sample grid is aligned
with each element.
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Figure 7: Isosurface within a degenerate finite element
approximated with one Marching Cubes cell.

It is interesting to note that our polygonisation algo-
rithm is stable even if degenerate finite elements are
used. Figure 7 gives an example of an element which
has two pairs of vertices with the same world coor-
dinates. If we approximate the finite element with a
single MC cell then we obtain two triangles (config-
uration 9) where one of the triangles is a line since
the two edge intersections on the right face have the
same world coordinates. Our algorithm automatically
removes such degenerate triangles since they are not
rendered and since the polygonised isosurface might be
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used as input to a postprocessing step such as a mesh
reduction algorithm.

4 Results

We use our algorithm to visualise the normal strains
inside the myocardium of a healthy and a diseased left
ventricle. The model for reconstructing the 3D motion
and strain of the left ventricle from tagged MR im-
ages has been developed by Young et al. based on a
finite element model of the left ventricle [21, 22]. The
model consists of 16 finite elements with its geome-
try being interpolated in the radial direction using lin-
ear Lagrange basis functions and in the circumferential
and longitudinal directions using cubic Hermite basis
functions. The strain field is represented by 10x10x6
sample points per element with 10 sample points each
in the circumferential and longitudinal directions and 6
sample points in the radial direction.

Figure 8: The myocardial radial strain in the left
ventricle of a healthy (left) and diseased (right) heart
visualised using colour mapping and the 0-isosurface.

Figure 8 shows the myocardial radial strain in the left
ventricle of a healthy (left) and diseased (right) heart
visualised using colour mapping and the 0-isosurface.
The isosurface separates regions of the myocardium
contracting and stretching in the radial direction. The
images on the left of the figure show clearly that the
healthy left ventricle expands in the radial direction
(wall thickening). The only exceptions are three small
cylindrical regions at the apex and the septal and
lateral wall. For the diseased heart wall thickening is
observed in the basal-lateral wall, the basal-septal wall
and in parts of the anterior and inferior wall. The rest
of the myocardium shows an abnormal deformation.
Analysing additionally the distributions of the normal

strains in circumferential and longitudinal direction
shows that the diseased ventricle does not contract
evenly but rather performs a shape change [23].

The images in the top row of figure 8 were created
using just 3x3x3 cells per finite element. It can be seen
that this is sufficient to obtain a close approximation of
the isosurface. Using the 10x10x6 sample points which
define the strain field (bottom row) gives a virtually
smooth polygonisation.

We have computed different isosurfaces for different
models and found that ambiguous configurations rep-
resent less than 5% of all intersected cells. The added
complexity of the algorithm and the slight overhead
caused by computing the indices for the expanded look-
up table are more than compensated for by the fact that
we obtain a topologically correct hole-free polygoni-
sation. Note that these two properties are particularly
important in biomedical sciences since holes could eas-
ily be interpreted as anatomical of physiological abnor-
malities.

5 Conclusion

We have introduced a novel algorithm for computing
isosurfaces for scalar fields defined over curvilinear fi-
nite elements. The algorithm is fast, topologically cor-
rect, gives a nearly precise fit of the isosurface with
respect to the model geometry and is stable for degener-
ate finite elements. Ambiguous cube configurations are
resolved using an efficient table look-up scheme. An
algorithm for creating this table automatically was sug-
gested. The advantages of the algorithm were demon-
strated by visualising the myocardial strain in a healthy
and a diseased left ventricle.
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Bi-Quadratic Interpolation of Intensity for Fast Shading 
of Three Dimensional Objects 
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Abstract 

Researchers in the field of Computer Graphics are often confronted with the trade off between visual 

realism and computational cost. So far, Phong and Gouraud shading have been treated as well established

methods and attempts have been made to improve visual realism or to reduce computational cost or both.  

These methods use linear interpolation to compute the normals or intensity, respectively, at each point on 

the surface. However, it has been proved that no surface would yield proper distribution of illumination

generated by the traditional Phong shading. Attempts have been made to improve the defects of linear 

interpolation used in Phong shading. One such attempt is the use of biquadratic normal vector interpolation. 

In this paper we have propose d an algorithm to achieve the visual realism of this method and at the same 

time we have reduced the cost of shading.  

Keywords: Phong Shading, Linear Interpolation, Quadratic Interpolation, Biquadratic Interpolation, 

Bezier Triangle 
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1. Background: 

In increasing order of visual realism, there are 

three well-known shading methods. The simplest 

shad ing model for a polygon mesh is Constant 

Shading or Flat Shading [1]. It uses illumination

model once to determine a single intensity value 

that is then used to shade an entire polygon. This 

shading method does not produce the va riations 

in shade across the polygon that should actually 

occur for visual realism. However, in this 
method, no interpolation takes place for variation

in shade. This is a very fast method.  

Gouraud shading [2], also called intensity 

interpolation shading or color interpolation

shading, elimi nates the intensity discontinuities 

across the adjacent polygons. Although a fairly 

fast method of shading, it suffers from Mach

Band effect and fails to capture detailed lighting 

characteristics. All the subsequent works are a 

variation of such interpolative shading.  

Phong Shading [3], also known as normal-vector 

interpolation shading, interpolates the surface 
normal vector rather than the interpolation of 

intensity. The interpolation occurs across a 

polygon span on a scan line, between starting 

and ending normals for the span. These normals  

are interpolated along polygon edges from the vertex

normals. These interpolated normals are then used in

intensity calculations. Phong shading yields 
substantial improvements over Gouraud shading 

when an illumination model with specular reflection 

is used. With this method, however the cost of 

shading is increase d since the interpolated normal are 

used to interpolate intensity over the surface of a 

polygon. 

2. Existing Methods: 

2.1 Attempts to improve Visual realism: 
Many researchers have contributed a lot to improve 
the visual realism proposing various interpolation

techniques. 

Overveld and Wyvill [4] proposed a quadratic normal 

vector interpolation algorithm to replace the 

traditional linear interpolation. Their algorithm is an

extension of Phong shading in which quadratic 

interpolation of normals is done. It overcomes the 

inappropriateness of traditional linear interpolation

when a surface approximated by polygons has 
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