
Interactive Modelling of Hair with Texture Maps
Will Baker and Scott A. King

Computer Graphics and Vision Research Group
Department of Computer Science

University of Otago
wbaker@cs.otago.ac.nz, sking@cs.otago.ac.nz

Abstract
We present a system for interactively modelling and styling hair on an arbitrary surface using texture maps . Texture
maps are used to modulate characteristics of hair strands on the surface, and combinations of these texture maps
represent a great deal of information about a hairstyle. We render the scenes in real-time, enabling the user to
interactively design and style hair to their liking. Our techniques are designed for real-time facial animation,
though they can be applied to the simulation of hair in general.

1 Introduction

Hair modelling and rendering is one of the most diffi-
cult problems in computer graphics. Much of the cur-
rent research in this area focuses on accurate models of
hair behaviour and appearance but most do not attempt
to provide a way of explicitly styling hair. Why is
it necessary to model hair accurately with computer
graphics? Most of the pressure for this kind of research
comes from the entertainment industry - realistic hair
for animations, special effects in movies and computer
games.

We present a system that allows a range of hairstyles
and hair types to be added to a 3D surface. Creating
such a system is not a simple problem - the average
human head has over 100,000 hair follicles and on the
head alone there are four distinct types of hair - scalp,
eyebrow, eyelash and facial hair [1]. Capturing this
complexity and range of characteristics is a difficult
task, and can be broken down into the following main
areas:

• The physical modelling of hair (geometry and
physical properties).

• Styling (length, placement and appearance).

• Rendering.

• Animation.

The aim of this research is to solve the first two of
these four problems (physical modelling and styling)
with the eventual goal of adding hair to an existing real-
time facial animation system, Kare [2]. We present
a new technique for applying and styling hair on an
arbitrary mesh, using interactive texture maps to define
the appearance of each strand of hair. This technique is
well suited to the placement and styling of facial hair,
and gives greater control than existing systems.

2 Related Work

2.1 Physical Model

The most immediate problem of modelling hair is cap-
turing its basic shape and behaviour. Hair is affected by
gravity and other external forces, giving hair its general
appearance. A model must be devised that simulates
this behaviour as well as being able to represent the
different types of hair (coarse, fine, curly, etc.). Colli-
sion detection (preventing strands of hair from passing
through the head or other body parts) must also be car-
ried out if the hair is to look convincing.

Anjyo et al.[3] present a physical model based on the
cantilever beam equation. A cantilever beam is defined
as a rigid beam fixed at one end and free to move at the
other. A differential equation is used to calculate the
bend of the beam due to gravity or other external forces.
Collision detection between hair and body is approxi-
mated by testing for intersection between the strands
and an ellipse; inter-hair collision is disregarded. We
modify the cantilever beam model of hair from Anjyo
et al.[3] for our physical model.

2.2 Styling

In order for hair to look convincing, it is necessary
to style it. Hair can be cut, combed, set or coloured
and countless hair products can be applied. Hair only
appears in certain areas on the head, so there must
be some system for specifying where these areas are.
Kajiya and Kay [4] and Goldman [5] used a Poisson
disk distribution (which models the way in which
mammal hairs are distributed [4]). A human head,
however, has follicles which are generally equidistant
from each other but have a random distribution [6].
Streit and Heidrich [6] suggest that reaction-diffusion
textures could be used to simulate this distribution.

84 Image and Vision Computing NZ



Styling techniques have been proposed [7, 8] which
give the user differing degrees of control over the look
of a hairstyle, allowing cutting, combing and the ad-
dition of curl [8] to the hair. Kim and Neumann [7]
approximated hair using thin shell volumes. The hair
can then have a combing function applied which allows
virtual combing, though this method is not interactive
which makes it more difficult to achieve an exact style.
Later research of Kim and Neumann [8] allows inter-
active editing of hairstyles based on clusters of hair
at different scales. This achieves pleasing results, but
to handle the information about each cluster of hair
during editing a large amount of memory (a maximum
of 200MB [8]) is required.

A different approach is that of Hadap and Magnenat-
Thalmann [9] who present an interactive styler based
on fluid flow. The interactive styler offers intuitive con-
trol of the hairstyle’s appearance and a range of differ-
ent styles can be achieved. However, this system is best
suited for long hair and the extent of its ability to gener-
ate short hair (such as eyebrows, eyelashes and beards)
is unclear. Hadap and Magnenat-Thalmann also state
that, because their system requires about a second to
update a style after changes, it is not real-time [9].

Here we propose a new way of styling hair, using in-
teractive texture maps to determine the length, colour
and combing of the hair. This is an improvement over
existing systems because the texture maps used to store
the information are small so that fast interactive styling
of hair is possible.

2.3 Rendering

The accurate rendering of hair is one of the greatest
challenges in computer graphics [10]. There are over
100,000 hairs on the average human head and each
of these hairs interacts with light in a complex way.
Hair is partially transparent, exhibiting both reflection,
which behaves anisotropically, and transmission.

Various methods for rendering hair realistically have
been presented [11, 4, 5, 12] which solve the prob-
lem satisfactorily. Usually, the lighting model used
for hair is that of Kajiya and Kay [4], but the recent
Marschner et al. [11] solution improves on this model.
They not only solve the lighting of hair strands con-
vincingly, but also handle issues such as back-lighting
and shadowing. Because their system is based on ray-
tracing, these effects can be easily captured by their
model without additional processing. However, ray-
tracing is an expensive process, so rendering time for
their method is slow. Because the Kare [2] system
operates in real-time a short rendering time is crucial.
Yang and Ouhyoung [10] present a method for simulat-
ing back-lighting which may be used to decrease ren-
dering time. Lokovic and Veach [13] present a shadow-

ing method they call ‘deep shadow maps’ which may
also prove to be a quicker way to simulate shadows.

3 Physical Model

A strand of hair is modelled as a polyline through sev-
eral equidistant vertices or nodes. The cantilever beam
method [3] is used to calculate the position of each of
these nodes based on a hair pore location and an initial
direction. The nodes are then connected with straight
line segments of equal length to approximate a curve.

Our method differs from the method of Anjyo et al.
[3] in that we calculate the bend of each hair differ-
ently depending on its length. In their method, the
bend is calculated for a fixed length of hair (i.e. a
fixed number of nodes) and in order to display different
lengths of hair the number of these nodes drawn during
the rendering process is limited. This means that a
short hair strand has the same amount of bend as longer
hair strands. A real strand of hair bends differently
according to its length - a longer strand weighs more
and hence is affected more by the acceleration due to
gravity.

Collision detection between hair strands and the sur-
face on which they are grown is approximated using a
parametric volume. Because this bounding volume is
parameterized, intersection tests are simple and hence
the collision detection process is fast. As the posi-
tion of each node in a hair strand is calculated it is
checked for intersection with the bounding volume - if
there is an intersection then the node is moved outside
of the volume in the direction of the surface normal.
This method is most satisfactory when hair is grown
from a parametric surface because the volume can fit
the surface exactly. When using a triangular mesh this
method is only an approximation, though it still yields
reasonable results.

4 Styling

We use texture mapping as a device to create different
hairstyles, allowing all the characteristics of a hairstyle
to be stored in several texture maps. These texture
maps can be generated directly on 3D geometry al-
lowing a user to create a hairstyle in 3D and in real
time. This geometry can either be a polygonal mesh or
a parameterized surface.

In order to represent all characteristics of a hairstyle,
our system uses three distinct texture maps. These are:

• Placement Map - This defines the density and
length for an area of the hairstyle.

• Colour Map - This defines the colour of each
strand of hair.

Palmerston North, November 2003 85



• Comb Map - This defines the change in initial di-
rection of each strand, simulating the combing of
hair.

Each of these maps is stored as a colour image, en-
abling an entire hairstyle to be captured in a standard
image file. The following sections describe each of
these texture maps in more detail.

Texture maps are traditionally used to add detail to a
model without adding extra geometry. A 2D image
is ‘mapped’ to a 3D model using texture coordinates
that are usually defined for each vertex in the model.
The texture coordinates map each point in ℜ3 to a 2D
location in texture space. This 2D location can be used
to store details, such as colour, which modulate the
colour on the surface of the model. Our system uses
a variety of mapping methods.

In our system, instead of the texture maps altering
the colour, they change the characteristics of the hair
strands growing at the 3D point. For each area covered
by a texel on the model, the value for this texel in the
texture map is used to grow the appropriately styled
hair strands in that area. Figure 1 shows a simple beard
style created using a placement and colour map.

Figure 1: Placement and colour maps with the resulting
hairstyle (right). The placement map (top left) is a
negative image of the actual map making it easier to
visualize than the original. The colour map appears at
the bottom left.

The hair placement map is a colour image in which two
channels represent density and strand length. When the
texture map is applied to the mesh, each texel covers a
certain area of the mesh. The density value stored in
the texture map determines how many hairs should be
grown in this area. The length value in the texture map
determines how long each of these hairs are. A length
or density of zero indicates that there is no hair being
grown in this area. The exact pore location of each hair
within a texel is determined randomly to better reflect
the distribution of hairs - as mentioned in Section 1.2
this distribution is random rather than uniform. In-
dividual strands of hair can also be added in precise

3D locations, for example adding eyelashes or nasal
hair. These strands are not stored in the texture map
but instead their geometry is stored separately.

Because the hair strands represented by a texel must
necessarily have similar characteristics (with some
small random variations), it is beneficial to use a
texture map of sufficient resolution. A lower resolution
texture map means that each texel covers a larger area
on the mesh. If large areas of hair on the mesh share
the same characterisitics (especially in the case of
colour and combing information) the overall hairstyle
will appear less convincing. We found that in practice a
texture map of 256x256 pixels has sufficient resolution
for satisfactory results.

Texture maps are also used to determine the colour of
each hair strand. Each texel of the colour map, when
mapped to the 3D mesh, covers a certain area of that
mesh. All the hairs within this area will get their colour
from that stored in the colour map. The colour map
need not be of the same resolution as the placement
map, so an area that has the same density and length
for each hair need not share the same colour.

Essential to the creation of any hairstyle is the abil-
ity to alter the initial direction of the hair. Hair can
be combed to change this direction, which is what the
comb map is used to simulate. In our system we ini-
tialize this direction to be the surface normal (with a
random perturbation), which approximates the actual
behaviour of hair. In order to simulate the hair being
brushed or combed and capture the aberations in the
direction the hair exits the scalp, a comb texture map is
used.

The comb map consists of a colour image in which each
channel corresponds to a magnitude in each of the three
primary axes (X , Y , and Z). The combination of these
channels gives a vector in three dimensions which can
be used to alter the initial direction of a strand of hair.
For example, if the RGB value of a pixel in the texture
map was (10, 20, 30) then the vector used to alter the
initial direction would be (10, 20, 30).

4.1 Interactive Texture Mapping

The texture maps described above can all be created
by hand using a standard painting program. This can
be a difficult task, especially in the case of the comb
map, because it is hard to visualise how the texture map
will appear after it has been mapped to the mesh. The
comb map is even more difficult to visualise because it
is representing a vector in ℜ3 with an RGB value in a
2D image. Figure 2 shows such a comb map together
with the resulting style.

In order to provide a more intuitive method to create
hairstyles, we have made it possible for a user to gener-
ate the three texture maps by painting them directly on

86 Image and Vision Computing NZ



Figure 2: A comb map (left) and the resulting style.
The effect of the comb map is difficult to visualise.

a 3D model. The mouse cursor acts as a virtual brush
which is used to apply different textures to the model.
The user’s mouse actions, which are in two dimensions,
are translated into three dimensions. This translation is
achieved by casting a ray through the mouse location
on the image plane and into the scene. The intersection
of this ray with the mesh, if any, can be calculated
and used to find the u,v coordinates of the texel being
altered.

Cylindrical texture mapping is used to find where this
point is in texture space, and the texture map can then
be updated according to the type of brush and the ap-
propriate texels can be refreshed. It is important to note
at this point that because it is known which texels have
changed it is only those texels that need to be refreshed.
Because only a few hairs need to be recalculated each
time, the operation is very fast. If all 100,000 hairs
needed to be recalculated the system could not work in
real-time.

Refreshing the texels that a user has changed is a simple
matter because, from the first intersection of the mesh,
the face intersected and hence the normal of that face
are known. Random pore locations within the changed
texel (or texels) can then be generated in texture space.
Each pore is tested to ensure that it lies within the inter-
sected face, and then hair is grown based on the texture
map values at u and v and the normal of the face. Test-
ing that a pore is inside a face requires that the face the
texel is associated with is first translated into texture
space. The texture coordinates, u,v, for each vertex of
the face can be found easily with a method similar to
that described above. The barycentric coordinates for
each pore location in texture space are then calculated
and used to find the pore location on the face in object
space (i.e. on the 3D mesh).

A slightly more difficult task is loading a complete tex-
ture map from the disk. The problem is that when
processing each texel in the map we do not know which
face the texel should appear on. When using a para-
metric volume this problem is simplified because it is
relatively easy to get from a u,v coordinate in texture
space to the 3D point on a parametric volume. But a
mesh is a different matter as each point does not map so

Figure 3: The styling system used in hairstyle gen-
eration. The toolbox on the left allows selection of
different brush characteristics, and the model view on
the right shows the current hair styling.

nicely into texture space. Our solution to this problem
was to iterate through each face in the mesh, translating
it into texture space. The bounding box of the face
is then found in texture space, which gives a collec-
tion of texels which could possibly contain the face.
Hair is then added to each of the texels at random pore
locations, but only if each location is within the face
(hence texels that contain only some or none of the
face will have less or no strands growing from them).
To make this method less computationally expensive,
information about each face (such as the normal, area
and the bounding box) is pre-generated and stored.

There are three different brush types available. The
placement brush ‘paints’ the hair onto the mesh with a
specified length. It also controls density and rate of hair
growth. The colour brush allows the colour of existing
strands to be changed. The colour is selected from the
toolbox using the convenient colour wheel. The comb
brush allows the user to drag the cursor over the hair
and comb it in real-time. The velocity of the cursor’s
movement affects the amount of combing, allowing in-
tuitive control of each strand’s initial direction. The
interactive texture mapping system allows varying con-
trol of hair strand geometry, enabling a wide variety
of hairstyles to be created with relative ease. Figure 3
shows the system in action with the toolbox for select-
ing brush characteristics on the left and the system view
on the right. The model in progress shows variable
colour on the moustache and combing on the eyebrows.

A limitation of the system as it stands is that the tex-
ture maps are distorted when they are applied to the
mesh. Because using a cylindrical map assumes that
the object closely fits a cylinder, as you approach the
top of the skull the texture is distorted. This is an un-
fortunate but unavoidable consequence of cylindrical
texture mapping. If hair needs to be grown on the scalp
a spherical texture map can be used. However, this
method has distortions when close to the poles of the
sphere so it is inappropriate for hair on the face.

Palmerston North, November 2003 87



A possible solution to the problem of texture map dis-
tortion is to manually (or perhaps automatically) de-
fine the coordinates of each vertex of the mesh. This
would enable the user to define which portion of the
texture map is used to define the hair on each face,
thus eliminating distortions. A beneficial side effect
of using manual texture coordinates is that areas that
require finer detail (such as eyebrows and eyelashes)
can be assigned greater areas of the texture map, while
areas that do not require detail (such as the middle of
the scalp) could be assigned a much smaller area in
texture space.

5 Results

Figure 4: Various beard styles created with our system.

Our method of representing hair with several texture
maps has been used to create many hairstyles, and per-
forms particularly well in the creation of facial hair.
Figures 4 to 7 show some examples of the styles pro-
duced by our system. Using our interactive system
these styles required minimal time to design - around
five minutes each. The styles were created on a Pen-
tium 4, 2.40GHz machine and rendered in real-time.

Figure 4 exhibits the ability of the system to model
facial hair. Note how even different beard styles alter
the appearance of the head model. Figure 5 shows hair
grown on parametric volumes. These volumes are an
approximation of the shape of the head so they do not
perform well for facial hair but they are satisfactory for
scalp hair, especially if collision detection is required.
The style in the middle exhibits collision detection us-
ing an elliptical bounding volume. Figure 6 shows hair
growing on two different mesh models, a torus (left)
and the Stanford Bunny (right). The Stanford Bunny,
in particular, is a difficult case because the shape of the
mesh does not fit well to a cylinder, causing distortions
of the texture map as described in Section 4.1.

Figure 7 shows the control that the system allows the
user over the hairstyle. It gives a comparison between
an actual eyebrow style and the reproduction of that
style using our system.

Figure 8 demonstrates another benefit of our texture
mapping system. Because all the information about
the hair strands are stored using a texture map it is

Figure 5: Various styles generated using parametric
volumes.

possible to easily store additional information about the
hair strands, in this case the growth rate. The figure
shows a simulation of hair growth. First a beard is
drawn with a short length and given some growth rate.
The current time value can then be altered using a slider
bar in the toolbox and the beard sprouts in real-time. It
is possible, with our system, to have a large number of
texture maps, and each could store different informa-
tion such as the degree of curl, colour change over time
(for greying hair or dyed hair with different coloured
roots), strand thickness, etc.

6 Conclusions and Future Work

We describe the use of texture maps to control the
placement and styling of hair. We also present a
system that enables the user to model and style hair
interactively on an arbitrary mesh or parameterized
surface. The user can specify the areas on this surface
that are to grow hair, as well as the colour and length
of the hair in each area. The user can then interactively
comb the hair by dragging a virtual comb over the
hair and watch as the initial direction of each strand
is altered in real-time. This styling method allows a
great variety of hairstyles to be created quickly and
easily, and then applied to a system such as Kare [2].
A particular strength of this system not seen in many
others is the ease with which it can handle facial hair
(such as eyebrows, eyelashes and beards), a problem
not often tackled in other work.

The modelling of the hair is a single coloured polyline
whose geometry is generated using the cantilever beam
method of Anjyo et al. [3]. It is also possible to ex-
tend this method so that each hair strand is modelled

Figure 6: Hair generated using arbitrary meshes.

88 Image and Vision Computing NZ



Figure 7: The system is able to capture fine detail.

Figure 8: Frames from an animation which simulates
beard growth by increasing strand length over time.

by a spline curve, resulting in smoother strands even
when viewed up close. Also, a continuous model of
the cantilever beam equation could be used - we use
a discretized approximation for speed but with the in-
crease in CPU power it may now be possible to use a
more accurate model.

Further texture maps could also be employed to repre-
sent a wider range of characteristics for each strand of
hair. The amount that each hair bends, the bending mo-
ment, can differ depending on the type of hair (scalp or
facial) and other factors such as hair styling products.
A texture map could be used to represent the bending
moment of each strand, and thus simulate gel and other
hair products being applied to the hair. The degree of
curling for each strand could also be stored in a texture
map, allowing a hairstyle to have different degrees of
curl in each area.

Rendering is done either using single coloured poly-
lines, which are simple and fast to render, or using the
lighting model of Kajiya and Kay [4]. The apparent
thickness of the hair does not change depending on the
distance of the camera to the hair. This could be han-
dled during rendering either by giving some geometry,
such as a cylinder or prism, to the hair or by drawing
lines of appropriate width. Currently the lines are uni-
formly one pixel wide. More recent lighting models
for hair (such as Marschner et al. [11]), which han-
dle effects such as backlighting and shadowing, could
also be used for high quality offline rendering once the
hairstyle has been defined interactively.

7 Acknowledgements

We would like to thank Sui-Ling Ming-Wong for her
expertise in spotting those hard to find grammatical er-
rors in all our writing.

References

[1] V. Valkovic. Trace Elements in Human Hair.
Garland STPM Press, New York, USA, 1977.

[2] S. A. King, A. Knott, and B. McCane. Language-
driven nonverbal communication in a bilingual
conversational agent. In Proceedings of Com-
puter Animation and Social Agents 2003, pages
17–22, 2003.

[3] K. Anjyo, Y. Usami, and T. Kurihara. A simple
method for extracting the natural beauty of hair.
In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques,
pages 111–120, 1992.

[4] J. T. Kajiya and T. L. Kay. Rendering fur with
three dimensional textures. In Proceedings of the
16th annual conference on Computer graphics
and interactive techniques, pages 271–280, 1989.

[5] D. B. Goldman. Fake fur rendering. In Proceed-
ings of the 24th annual conference on Computer
graphics and interactive techniques, pages 127–
134, 1997.

[6] L. M. Streit and W. Heidrich. Modelling the em-
bryological distribution of follicles. In Proceed-
ings of Western Computer Graphics Symposium
(SKIGRAPH ’01), 2001.

[7] T. Y. Kim and U. Neumann. A thin shell volume
for modelling human hair. In IEEE Computer
Animation Proceedings, pages 104–111, 2000.

[8] T. Y. Kim and U. Neumann. Interactive multires-
olution hair modelling and editing. In Proceed-
ings of the 29th annual conference on Computer
graphics and interactive techniques, pages 620–
629, 2002.

[9] S. Hadap and N. Magnenat-Thalmann. Interactive
hair styler based on fluid flow. In Computer
Animation and Simulation 2000, pages 87–99,
2000.

[10] T. J. Yang and M. Ouhyoung. Rendering hair with
back-lighting. In CAD/Graphics ’97 Proceedings,
pages 219–296, 1997.

[11] Stephen R. Marschner, Henrik Wann Jensen,
Mike Cammarano, Steve Worley, and Pat Han-
rahan. Light scattering from human hair
fibers. ACM Transactions on Graphics (TOG),
22(3):780–791, 2003.

[12] T. Y. Kim. Modelling, Rendering and Animating
Human Hair. PhD thesis, University of Southern
California, 2002.

[13] T. Lokovic and E. Veach. Deep shadow maps.
In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques,
pages 385–392, 2000.

Palmerston North, November 2003 89



An Efficient and Topological Correct Polygonisation
Algorithm for Finite Element Data Sets

Burkhard Wünsche1 and Jenny Zheng Lin2

Division for Biomedical Imaging & Visualization, Department of Computer Science,
University of Auckland, Auckland, New Zealand

1burkhard@cs.auckland.ac.nz, 2jennylin nz@yahoo.com

Abstract
Implicit defined surfaces of scalar fields (isosurfaces) are a common entity in biomedical, scientific and engineering
science. Polygonising an isosurface permits hardware assisted rendering and simplified geometric operations such
as surface analysis and area computation. This paper introduces a novel algorithm for computing isosurfaces for
scalar fields defined over (potentially curvilinear) finite elements which are common in numerical simulations and
physically-based modelling. The advantages of the method are demonstrated by visualising the myocardial strain
in a healthy and a diseased heart.

Keywords: polygonisation methods, isosurfaces, Marching Cubes, curvilinear elements, finite elements

1 Introduction

Implicit defined surfaces of scalar fields (isosurfaces)
are common in biomedicine and other sciences. Isosur-
faces impart knowledge about the overall distribution
of a scalar field and can be used to extract anatomical
structures from medical imaging data. The c-isosurface
of a scalar field s is defined as all points x for which
s�x� � c.

Numerous algorithms (so-called polygonisation meth-
ods) have been proposed for the efficient computation
of isosurfaces (e.g., [1, 2, 3, 4]). Interactive display
rates and reduced storage requirements can be achieved
by utilising adaptive methods [5], mesh reduction tech-
niques [6] and multi-resolution meshes [7, 8]. A survey
and analysis of polygonisation methods and optimisa-
tion techniques to achieve faster computation and ren-
dering of isosurfaces is found in [9].

The Marching-Cube algorithm [10] has been one of
the earliest and most popular methods. The algorithm
requires as input a regular grid of sampled field values
and “marches” through the volume cell-by-cell. Each
grid cell has eight sample values at its corners. The
method constructs a tessellation by computing for each
cell the intersection points of the cell’s edges with the
isosurface and by connecting these intersection points
with triangles obtained by a table look-up. The look-
up table contains all configurations which fulfill the
assumption that the isosurface intersects a cell’s edge
at most once. Since there are eight vertices in each
cubic cell and two values, positive and negative, there
are 28 � 256 ways the surface can intersect the cube.

Lorensen and Cline use symmetries to reduce the num-
ber of patterns to 15 which are shown in figure 1 1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Positive vertex

Negative vertex
Polygon

Figure 1: Triangulated cubes.

The main disadvantage of the algorithm is that some
patterns in figure 1 are topologically ambiguous as
noted by van Gelder and Wilhelms [12]. This may
produce a surface with a hole as pointed out by Düurst
[13] (see figure 2). The literature offers various
solutions to the ambiguity problem [14, 15, 16, 17, 18].
Also in some applications the topology of a biomedical
structure is known in advance and specialised
polygonisation algorithms can be employed to take
this into consideration [19].

In this paper we present a modification of the Marching
Cubes algorithm which can be applied directly to curvi-

1The cases 12 and 15 are reflective with respect to the xy-plane.
This leaves 14 topologically distinct patterns (22 without inversed
patterns) [11].

90 Image and Vision Computing NZ




