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Abstract
Content-based image retrieval (CBIR) has been intensively studied recent years due to its importance in various
database management and computer vision applications. Searching by an image example that allows to retrieve
a given image or similar images from a large image collection is one of the most challenging CBIR problems
today. The paper proposes and investigates a new algorithm for a partial solution of this problem. The algorithm
uses combined colour – texture features to find out whether an image contains spatially homogeneous colour
textured regions similar to the given example (training image). First, quantization of the HSV colour space
focuses only on the colours to be found during the search. Secondly, similarity between characteristic normalised
colour co-occurrence histograms (nCCHs) in the moving windows over the image and the like training nCCHs is
measured to detect the desired regions. Finally, the frequency distributions of the similarity values are compared to
rank the images in the database in their similarity to the training image. Our experiments show that the proposed
algorithm effectively retrieves images containing the desired textures.

Keywords: content-based image retrieval (CBIR), texture, colour co-occurrence histogram (CCH), pairwise
interaction

1 Introduction

Image retrieval has important practical applications in
database management and computer vision (see, for
instance, comprehensive surveys in [1, 2, 3]). An effec-
tive image retrieval system should integrate both text-
based [4, 5] and content-based image retrieval (CBIR)
techniques. Limitations of the former ones are the large
amount of human’s labour for manual image annota-
tion and subjectivity of human perception of rich im-
age contents. The latter techniques try to overcome
these limitations by relating image content to partic-
ular quantitative image features such as colour, texture,
shape of objects, and so on. The retrieval problem
is formulated as the problem of searching in a large
pictorial database for images having features coincid-
ing with or closely similar to those of a given example
(training image).

Most of the recently developed CBIR techniques are
based on colour and texture features. Popular colour
features include a pixel-wise colour histogram [6],
colour moments [7], and colour set vectors [8, 9].
Experiments in [7] have shown that the moment-based
features perform sometimes better than other ones.

Texture features describing spatial signal interrelations
are also widely used in image retrieval. Most of such
features measure statistical properties of grey level
co-occurrences in particular subsets of pixels, e.g.,

contrast, inverse difference moment, entropy and
several other properties of a grey level co-occurrence
matrix in [10, 11], statistics for a group of such
matrices reflecting a characteristic structure of pairwise
pixel interactions [12], or statistics of coefficients of
the wavelet or Gabor image transforms [13, 14].
Today’s CBIR exploits usually first three of the six
perceptually meaningful textural features derived
from the co-occurrence statistics in [15], namely,
image coarseness, contrast, directionality, linelikeness,
regularity, and roughness.

Combinations of particular features result sometimes in
better performance [16, 17, 18]. Thus one might expect
that some combined colour-texture features can in prin-
ciple enhance the current CBIR techniques. This paper
proposes and investigates an algorithm that retrieves a
given training image and/or similar images from a large
image collection by comparing characteristic subsets of
normalised colour co-occurrence histograms (nCCHs)
collected over small windows of a fixed size around
each pixel. The characteristic subsets are selected using
a generic Gibbs random field (GGRF) texture model
proposed initially in [19, 20] for greyscale spatially ho-
mogeneous textures.

2 Retrieval Algorithm: Basic Steps

The proposed algorithm converts first the original RGB
colour space into the HSV (Hue, Saturation, Value)
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one and quantise this latter in order to reduce the data
volume while preserving most of the training colours.
Then the GGRF model is used for selecting the pixel
neighbourhood which is most characteristic for the
training image and for collecting the corresponding
training nCCHs both over the entire image (as to
describe it quantitatively) and in the moving windows
of a fixed size centred at each pixel. These latter
nCCHs are used to select a similarity threshold for
detecting pixels that might belong to the desired
texture. The threshold relates to the minimum
similarity between the local and global training
nCCHs. After selecting the candidate texture regions,
their similarity to the training texture is measured by
forming an empirical distribution of distances between
the local (window-based) nCCHs for the image at
hand and the global (entire-image-based) training
nCCHs and comparing it to the like empirical training
distribution.

Let both the training sample and all the images in an
image database be already converted into the HSV
colour space. Then the basic steps of the algorithm are
as follows:

1. Collect the colour set by quantising the training
sample.

2. Choose the most characteristic nCCHs for the
training sample.

3. Find the empirical distribution of the distances be-
tween the training local and global nCCHs.

4. Select the maximum distance as the distance
threshold.

5. For each image in the database,

(a) Select the candidate colour pixels in the im-
age using the above training colour set.

(b) Find the candidate texture regions by thresh-
olding the distances between the local nC-
CHs in the moving window around each can-
didate colour pixel and the global training
nCCHs.

(c) Calculate the distance between the empirical
distribution of the nCCHs-based distances
over the candidate texture region and the
like empirical training distribution.

6. Retrieve the database images with the bottom-
rank distances being below a certain threshold.

2.1 Colour space quantization

The RGB colour space is the most common format for
digital images, while the HSV (Hue, Saturation, Value)
model is more attractive in CBIR applications because

of perceptually meaningful independent channels. To
match human colour perception having more tolerance
to saturation and value deviations, the quantised images
should preserve more hue levels comparing to the other
two channels. The quantisation helps also to keep a
reasonable computing time.

Let G � �gi � �gi�h�gi�s�gi�v� : i � 1� � � � �M; gi � Qhsv�

where Qhsv � �Qh�Qs�Qv� denote a digital colour im-
age in the 3D HSV vector colour space. Here, g i is
a colour vector for the image position i being a short-
hand notation of the 2D integer Cartesian coordinates
i � �x�y�, and Qh�Qs�Qv are the finite integer sets of
the colour component values: Qh � �0� � � � �Qh�, Qs �
�0� � � � �Qs�, Qv � �0� � � � �Qv�. Due to a specific bi-
conic form of the perceived HSV space, the quantised
colours involve Qh � 1 hue levels, Qs saturation levels
and Qv value levels plus Qv � 1 pure grey levels, so
that the total number of colours after quantisation is
τ � �Qh�1��Qs�Qv�Qv�1. For example, if Qh �
17�Qs � 3�Qv � 3, then τ � 166.

Let Gtr � �gtr
j � �gtr

j�h�gtr
j�s�gtr

j�v� : j � 1� � � � �Mtr ; gtr
j �

Qhsv� denote the training image. Let a colour
set Φ present all the colours contained in the
training sample Gtr. Then a candidate image
G� � �g�

i : i � 1� � � � �M; g�

i � Φ� can be obtained from
the image G to be searched for as follows:

g�

i � gi, if gi � Φ or it is sufficiently close to that
set;

g�

i � �0�0�Qv�, otherwise (the white background).

The candidate image G� that keeps all the colours sim-
ilar to ones in the training sample is used at the next
step. In order to reduce computing time, the training
sample Gtr and all the candidate images G� use the
index images with respect to the colour set Φ, so that
the images themselves need not be changed.

Let the index set of Φ be Q � �0� � � � �Q�. Then the in-
dex images of the training sample Gtr and the candidate
image G� will be Gtr � �gtr

j : j � 1� � � � �Mtr ; gtr
j � Q�

and G� � �g�

i : i � 1� � � � �M; g�

i � Q�, respectively.

2.2 Pixel-wise Similarity Measure

Spatially homogeneous greyscale image textures
can be modelled as samples of a generic Gibbs
random field (GGRF) with multiple pairwise pixel
interactions [19, 20]. Characteristic geometric
structure of interactions and Gibbs potentials giving
quantitative interaction strengths for a particular
texture are analytically estimated from the training
sample of the texture. The estimation yields a
characteristic subset of pixel neighbours A specifying
most “energetic” translation invariant families of
interacting pixel pairs, or cliques of the neighbourhood
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graph, Ca � ��i� i � a� : i � �1� � � � �M�; i � a �
�1� � � � �M��; a � A. In our case, each such clique
family presented in the GGRF model is extended onto
a colour texture by the corresponding CCH acting as a
sufficient statistic.

Let Fa�Gtr� � �Fa�q� s�Gtr� : q� s � Q� and Fa�i�G� �
�Fa�i�q�s�G� : q� s � Q� denote the global nCCH for the
clique family Ca over the training sample Gtr and the
like local nCCH over the moving window �W around a
position i in the image G, respectively [21]. Experi-
ments with different textures show that the symmetric
χ2-distance between these two CCHs:

Da�i�Fa�i�G��Fa�Gtr�� �

∑
q�s�Q

�
Fa�i�q�s�G��Fa�q�s�Gtr�

�2

Fa�i�q�s�G��Fa�q�s�Gtr�

(1)

is much less scattered over the training sample than, for
instance, the pixel-wise Gibbs energies or conditional
probabilities of signals. Therefore, for the �A� charac-
teristic families, the pixel-wise similarity measure be-
tween G and Gtr can be defined as follows:

Di�Fi�G��F�Gtr�� �
1
�A� ∑

a�A
Da�i�Fa�i�G��Fa�Gtr�� �

In fact, most of the CCHs for the different clique
families in a homogeneous texture have very similar
patterns. Therefore the similarity measure does
not change significantly when the number of the
characteristic families is increasing. In our experiments
below only one most “energetic” family is used to
calculate the distances.

The candidate texture regions in the image G �

are detected pixel-by-pixel by thresholding all the
distances �Di�Fi�G

���F�Gtr�� : i � 1� � � � �M� using the
distance threshold ξ � max�D j�F j�G

tr��F�Gtr�� : j �
1� � � � �Mtr�. The detected regions are of the similar
texture type relating to the training sample with respect
to the pixel-wise CCH-based similarity measure.

2.3 Region Similarity Measure

Let Ω�G�� be the candidate texture regions in the image
G�. Let D�Ω�G��� � �Dk�Fk�G

���F�Gtr�� : k � Ω�G���
be the distance distribution over the candidate texture
regions. Let D�Gtr�� � �D j�F j�G

tr��F�Gtr�� : j �
1� � � � �Mtr � be the distance distribution over the
training sample. The distance range in Eq.(1) is
from 0 to 2 inclusively. We can estimate relative
frequency distributions D�Gtr�� and D�Ω�G��� by
quantising the distance range with a certain step
∆, U � �0�∆�2∆� � � � �U∆ � 2��. The symmetric
χ2-distance between these two distributions similar
to Eq.(1) gives the region similarity measure ζ such

that 0 � ζ � U . The desired images to be retrieved
have the top-rank ζ–values after the database is sorted
by the descending distance order, that is, the smaller
the distance ζ , the higher the rank of an image and
the more likely the image regions similar to the
training sample. A threshold ζ̄ of the region similarity
measure ζ should be chosen to reject images with the
“inappropriate” candidate regions.

3 Experimental Results and Conclu-
sions

The experiments below use 167 colour images
(128�128) from the MIT Media Lab VisTex database.
Other parameters of the algorithm are chosen as
follows: the moving window 17� 17, one (�A� � 1)
most energetic clique family per each training sample
Gtr selected among 1830 possible variants with the
inter-pixel x and y offsets up to 30, and the quantising
distance step ∆ � 0�0125. The original VisTex texture
patches (64� 64) selected as the training samples are
shown in Fig. 1.

Figures 2 – 9 illustrate results of texture retrieval us-
ing the proposed algorithm and the HSV quantisation
with Qh � 23�Qs � 3�Qv � 3. Each example demon-
strates the original VisTex texture patch selected as the
training sample (a) and the four top-rank (in similarity)
retrieved images with quantitatively similar texture re-
gions (b)-(e). White regions in the images represent the
rejected background having colours that differ much
from the training ones. As one may expect, the images
have the smallest region distance with respect to their
own training patches.

Table 1 lists more results of colour texture retrieval. If
the threshold ζ̄ � 1�75, almost all the retrieved images
are our expected ones except for the training samples
“Fabric.4”, “Metal.0”, and “Tile.0”.

The reason is that the retrieval accuracy depends on
the number of colours for the training image in the
colour set Φ specified by the HSV quantization. Gen-
erally, texture discrimination becomes reasonably good
for the chosen image database if the number of individ-
ual colours in the set Φ is greater than 16. Results of the
colour texture retrieval for training sample “Fabric.4”
and “Stone.4” with different variants of the HSV quan-
tisation are shown in Tables 2-3. This suggests that
the set Φ has to be found by dynamically choosing the
quantising levels for each training sample in order to
obtain the precise retrieval. Our experiments show that
16� �Φ� � 32 is a suitable range for most of the images
in our database. Meanwhile, an inappropriate set Φ can
result in some unexpected retrieved images. For exam-
ple, for the training sample “Brick.0” shown in Fig. 3,
the totally different texture “Misc.2” emerges among
the images retrieved with Qh � 23�Qs � 3�Qv � 3, and
�Φ� � 8. However, when �Φ� � 17 under the quantisa-
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tion with Qh � 27�Qs � 5�Qv � 5, the texture “Misc.2”
is be excluded from the retrieved subset, and only the
two textures “Brick.0” (ζ � 0�049) and “Brick.1” (ζ �
1�29) remain as the retrieved ones. These and other our
experiments show that the proposed algorithm effec-
tively retrieves images containing the desired textures.

Figure 1: The original VisTex texture patches (64�
64) selected as the training samples: Bark.0, Bark.12,
Brick.0, Buildings.1, Clouds.0, Fabric.0, Fabric.4, Fab-
ric.8; Fabric.11, Fabric.13, Fabric.15, Fabric.17, Flow-
ers.0, Flowers.4, Food.0, Food.6; Food.10, Grass.1,
Leaves.1, Leaves.12, Metal.0, Misc.2, Paintings.1.0,
Sand.0; Stone.1, Stone.4, Terrain.0, Tile.0, Tile.7,
Water.0, Water.2, WheresWaldo.1, respectively.

Figure 2: (a) Training sample Bark.12; (b)–(e) the
retrieved four top-rank texture regions: Bark.12, ζ �
0�12; Bark.11, ζ � 0�22; Bark.10, ζ � 0�91; Bark.9,
ζ � 1�49, respectively.

Figure 3: (a) Training sample Brick.0; (b)–(e) the
retrieved four top-rank texture regions: Brick.0, ζ �
0�054; Misc.2, ζ � 0�35; Brick.1, ζ � 0�44; Misc.3,
ζ � 1�99, respectively.
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