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Abstract

Extracting speech intelligibility meaningful face features is one of the most actively researched fields
in Image Processing. So far, no system is able to precisely extract contours of lips, eyebrows, eyes in
changing conditions. This paper focuses on external and internal lip contours extraction and introduces
some variations on active contours theory as well as a broader development of the skin-oriented hue-like
colour space. Extracted contours on diverse lip shapes under varying illumination conditions are then

provided.
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1 Introduction

Over the years and since the first research work
published on lip and face feature extractions
[1], a tremendous number of publications have
been concentrating on locating, tracking faces
and subsequently on estimating face features
contours. Indeed, it is commonly acknowledged
that the speech visual information, mainly the
mouth area, is an essential component of the
speech intelligibility process which can help the
listener under degraded acoustical conditions
[2]. Furthermore, new developments in Human-
Computer Interface have proven that a realistic
synthetic face facilitates the interaction with
the human user. Recently, results dealing with
stereo-cameras system and providing 3D lip
contours have been published [3]. Still, realistic
(i.e. looking like the real one), finely detailed lip
contours are scarcely obtained in the published
works. Although they might not be mandatory
for audiovisual speech processing, where the
in-between lip area seems to carry enough visual
information [4], they are necessary in applications
such as synthetic talking faces (videoconference,
interactive agent, and cartoon animation), user
verification and recognition (audiovisual biometric
features).  Other applications for audio-visual
interface include communication for disabled
people and MPEG4 transmission
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Our hierarchical face feature extraction algorithm
first segments the face in several regions (usually
the skin, lip and inner lip areas) using hue, motion
and clustering observations embedded in a Markov
Random Field relaxation method. The mouth area
being located, characteristics points of the mouth
(namely commissures and vertical extrema) are ex-
tracted. Finally, using gradient and region infor-
mation from the hue image, active contours con-
verge towards the lip contours. This paper will
not focus on the face location and face features
tracking over video-sequences components, already
published by the authors in [5] and [6], but on the
definition of the hue-like colour space and on some
extension of the active contours, both essential to
accurate lip contours extraction. The next chap-
ter will introduce the theory behind the logarith-
mic hue-like colour space (now called LUX). The
third chapter will briefly review the active contours
theory and introduce two important notions: the
string snake and a hue-based statistic for inner
snake initialisation. The following chapters will
then provide some results and conclude this paper.

2 The LUX space

The LIP (Logarithmic Image Processing) model is
a mathematical framework which was introduced
in [7], for the explicit purpose of grey-level image
representation and processing. This model was
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later extended by [6] in order to facilitate the rep-
resentation of colour images and specifically engi-
neered for the purpose of real-time skin segmenta-
tion. The model, known as the LUX colour space,
has been demonstrated to provide some robustness
to changing illumination and also emphasizes hue
in regions characterized predominantly by either
the red - as is the case for human skin [6] - or blue
channel.

The LUX colour space consists of the components
(L,U, X) which correspond respectively to the no-
tions of luminance, hue and saturation.

L=R+1D23G+1D)*B+1)% -1 (1)
MEtly jfR< L
) 2\Gn ’
U= { M — %(é—ﬂ) otherwise. )
MBLl)y jfB<L
—J 2\Ix1 ,
X { M — %(g—ﬁ) otherwise. 3)

Where M corresponds to the dynamic range of
grey-levels i.e. 256 for 8-bit coding, and R, G and
B correspond to the components of the RGB space.

The LIP model is defined in the continuous case by
three equations: a transform f from the intensity
space ( variable x ) to the space of tones ( variable
y ), an isomorphism ¢ from the space of tones onto
a logarithmic space ( variable T ) and an inverse
isomorphism ¢! [6].

frooy=f@=mu(1-=) (4)
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where z €]0, ..., z¢] is a continuous grey level and
zg €]0, ..., M] is the maximum transmitted light.

The isomorphism, ® = ¢o f, provides a logarithmic
transform normalised by zg.

@:m%ﬁ:Mln(%) (7)

T =1 exp(—%) (8)

As the components R, G, B € [0, M[x[0, M[x[0, M|
in the discrete case, rgb are taken as r = R + 1,
g=G+1and b= B+ 1 in order to maintain the
interval ]0, M] as is required by the LIP theory [6].
The transformed variables luz are noted similarly
ie. [ =L+1 etc.

The following illustrates the construction of the
LUX colour space:
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The isomorphism, ®, transforms the [r, g, b] vector

into its logarithmic counterpart [, g, b].
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The transform 7' is then applied to [F, g, b], yielding
the vector [l,u, T]:
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If we let ro,go and by correspond to the maximal
values of the colour channels r, g and b respectively
and combine Eq’s. 9 and 10 then,

T=03MIn"2 +0.6MIn% +0.11n%0
r g

70\ 03 % 0.6 Bo 0.1
=M ln(T) +1n<g> —l-ln(?)

0.3 0.67,0.1
70" 9o Do
= Mln <ro.3go.6bo.1> (11)

Also, by letting lp,ug and xo correspond to the
maximal values of [, and x, and using Eq’s. 8, 10
and 9 we yield:

1
=1 77,0.390.61)0.1 12
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At this point two assumptions are made:

1. the components rq, go, bp are close to the max-
imal intensity Ip. This assumption can be
justified given that, the camera has been white
balanced, calibrated for the full range of white
values.

2. the maximal luminance Lg is close to the dy-
namic range M. additionally, the relation ly =
ug = x9 = M is imposed to ensure that an
equivalent dynamic range is maintained.
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This reduces to Eq’s. 15 - 19:

[ = 1030601 (15)
u+:F—Z

:M; where ™ >1= R< L (16)
Ty =b—1

:M? where b >1= B < L (17)
u_=1-7

:M% where 7 <1 = R> L (18)
r_=1-b

:M% whereb<1= B> L (19)

Under the strong assumption that skin is predom-
inantly characterized by the red channel i.e. R >
L & 7 < 1 it is sufficient to take only the contri-
bution of @_, and as such, we may define the red
chroma as:

U { M%EL if R> L,

M —1 otherwise. (20)

Noting, from Eq. 1, that the luminance formula L
within the LUX space is simply a weighted geomet-
ric mean of the R,G and B components - it can be
inferred that regardless of the image, the difference
between the luminance and Y or G channels will

be minimal. Thus Eq. 20 can be further simplified
to:

~ [CO
{256><R if R> G, (21)

U= 255 otherwise.

The ratio G/R is scaled by the multiplicative con-
stant in order to adjust its range to the 8-bit quan-
tization levels ( M = 256 )

Figure 1: From left to right: an image extracted
from the Claire sequence, the corresponding angu-
lar hue and the logarithmic hue-like image obtained
using the LUX space.

3 Active contours

Over the years and since the first research work on
lip and face feature extractions [1], methods have
been divided in global and local approaches. Local

Palmerston North, November 2003

approaches are based on grey-level or colour values
of a pixel or a group of pixels, gradient and some-
times spatio-temporal information ([6]). Statistical
values over a region or projection [8] of the pixels
information can be used to assess whether they
belong to face features regions. Still these methods
apart from [6] are often inconsistent over faces as
they heavily rely on heuristic considerations, such
as the number of peaks and valleys of the curve
obtained by horizontal projection and concatena-
tion of the image pixels. However, when applied
locally, i.e. when the location of the face features
is roughly known, they can help simplify the fea-
ture contour extraction. Global approaches usually
rely on shape constraints and local information
(grey level, colour or gradient values) of the image.
The main approaches are Deformable Templates,
Active Shape Models and Active Contours. De-
formable templates introduced by [9] rely on sim-
plistic description of face features and tend more
to locate the features rather than delineating their
precise contours. The first deformable template
lip model was composed of three quadrics, two
parabolas and had up to ten parameters accounting
for the position, angle, width, length and respec-
tive heights of the lip contours. The latest de-
formable template describes the face contour, nose,
lip, eyes and eyebrows contours through about one
hundred control points [10]. Still it usually requires
a rough manual fitting to the face and rarely pro-
vides contours detailed enough to retain speech in-
telligibility information. Active shape models have
been introduced by [11]. They use the statistical
analysis (usually via principal component analysis)
of the lip shapes variations through locution to
define a generic deformable model of lip contours
and its mode of variations. The first step is the
classification of the face feature contours database.
The technique has been developed by [12] for face
analysis and consists on the computation of the
eigenvectors of the autocorrelation matrix, formed
by the concatenation of the vectors describing the
face features (usually via a set of points). The
contours are then supposed to evolve only through
shapes that can be described as a mean (of the
database set of features) contour and a linear com-
bination of the largest eigenvectors (that can be
seen as contours), their associated weighting co-
efficients defining their respective influence. Al-
though the process provides a way to control the
contour shapes, there is no clear indication on how
the database set composition influences the allowed
shape variations. Furthermore, the database set of
face contours, that should be as large as possible
to account for all the likely face feature shapes,
is usually determined manually. This combined
with the expression-less aspect of the extracted
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contours refrain from using that method as long
as automatic and precise method extracting face
feature contours does not exist. Active contours in-
troduced by [13] are an energy-based method which
evolves through the minimization of their func-
tional which is a balanced combination between
internal constraints (based on bending and stretch-
ing physical properties of thin plates) and exter-
nal constraints (based on image information which
describe the features to extract). They were pri-
marily introduced as an interactive method where
the user could help the evolving process being at-
tracted (via the adjunction of additional energetic
term know as string) to some interesting part of
the image or instead pushed (via energetic term
known as volcano) away from other specific re-
gions. For their ability to adapt to various situ-
ations without exhaustive testing, parameters set-
ting or database management, the active contour
technique has been chosen to extract lip contours.

3.1 Theory

An active contour is a constrained chained con-
tour (usually defined by a set of points v (eq. 22)
evolving through the minimisation of its associated
energy functional ® (eq. 23). The active contour
moves towards its final position while constantly
balancing the respective influence of its internal
energy (eq. 24) and external energy, also known as
perturbation.

v(s) = [z(s),y(s)], sef0,1] (22)

d:vu(s) — Eint(5) + Eext(s)) ds (23)

The internal energy (Eq. 24) is a second order
regularization term derived from the Tikhonov ill-
posed problem theory [14] which controls the curve
bending and stretching properties via the param-
eters a and . The external energy (Eq. 25)
has its minima near the image features to extract.
Active contours achieve best when they are set up
to extract image contours, i.e. when their external
energy has its minima on edges. To do so, a Gaus-
sian filtered edge map of the hue image is used (eq.
25):

alv'(s)* + Blv" (s)]? (24)
— V(G @ H)(ws)*  (25)

Eznt(s) =
Eemt(s) =

with V represents the gradient operator, G, the 2D
Gaussian kernel and H the hue image. This leads
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to the classical dynamic scheme (Eq. 26) where I;
is the identity matrix, A the Toeplitz snake matrix,
V the snake control points vector and % the time
step coefficient.

V) = <Id + %) - <V(t - %F(V(t _ 1))) (26)

where F' represents forces derived from external
energy (Fet(v) = _V( Eest(v(s))) ).

The matrix Iy + 7
matrix and is a narrow band (of width 5) quasi-
pentadiagonal Toepliz circulant matrix [13]. Its
inverse is usually approximated using the LU in-
version technique, which can be computationally
expensive for large matrices. Under a few assump-
tions, which can be found in [5] it has been demon-
strated that the general element m; of the matrix
inverse is equal to:

is called the snake stiffness

LN cos(2(l—1)](vk—1)n)
NZ 4 gin2 BT (43sin2 BT £ h2a )\

h
~

(27)

with (I +
trol points (our case in this paper), a symmetric
circulant matrix with its first line of the following
form:

%)_1, being, for an even number of con-

! ! ! ’ !
[ml my Mpys2 Mpyj241 Mpyya

3.2 String snake

Although not discussed in this paper, the corners
(or commissures) of the mouth precise location
is an essential step towards accurate lip contour
extraction. Previous work trying to extract mouth
features without commissures detection lead to
failure [15]. Using the extracted corners as anchor
points for an active contour has been proven
successful [5]. Presented here is an improvement
of this technique where the active contour is
anchored to the corner points via strings (fig. 2),
thus providing more freedom of movement and
therefore helping obtaining better results. For
an N points active contours, the snaxels V; and
V%, are then connected to the commissures via
strings. The active contour evolution equation
then becomes:

Vt) = (Id + §>_ <V(t - %F(V(t _ 1))) (29)
+Fstring(fixly %) + FStT‘ing (fimﬂ V%)) (30
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where fiz; and fiz, are respectively the left and
right position of the commissures points (see fig.
2). A string-like link between A;(v;) and M;(v;),
creates at point M; a force equal to:

OF
Fstring (’Uz',’l)]') = - (%)Z (31)
—

Fstring (vi;vj) = 2kMzM] (32)
Estm'ng (U,’,Uj) = _k”vi - UJ'HZ (33)
Fiacd " i . -

i
v, Wl

. . " R .

Figure 2: Closed active contour anchored to fixed
points via strings.

3.3 hue based statistics for inner snake
initialisation

The major problem encountered while extracting
lip contours is, the outer-lower lip contour detec-
tion and the initialisation of the inner lip active
contour. The outer-upper lip contour is always well
detected thanks to a clear edge transition between
the skin and the upper-lip. It has to be pointed
out as well that outside the lip corner area (where
shadows annihilate image information), the hue,
derived from the LUX space, is a good estimator
of the lip region. Furthermore, both lips usually
have the same colour characteristics. Therefore, a
lip colour statistic can be derived from the study
of the pixels situated:

e on a few lines under the upper-outer lip con-
tour (as the upper lip is thin)

e on 2/3 of the columns under the lip boundary
(to avoid the colour-less corners area)

The mean (my;p) and variance (oy;p) of the hue
over the previously defined area is computed. By
supposing that the distribution of hue values over
the lip area follows a Gaussian law, the probability
a pixel p(z,y) belongs to the lip area is given by
Prno(p(z,y)) < n with:

1 exp _p(ra y) - mlip2
202

(34)

The inner active contour points are then initialised
on the first pixels marked as "not belonging to the
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lip region”, encountered inwards the outer active
contours. Associated with the string-snake, this
usually provides accurate lip contours.

4 Results

Figure 3: Detected borders on two different speak-
ers (top: Benny, bottom: Aktham). From the
plain image to the lip contours extraction: from
left to right; from top to bottom : Luminance
image, hue image, mouth commissures, initial
snake points, corresponding spline, external snake
after convergence, statistics on lip area, initial
internal snake points obtained thereafter, corre-
sponding spline, internal and external snakes after
convergence.
¥

Figure 4: Detected borders on Marc using the
Labiophone helmet.

Figure 5: Detected borders on Patrice (top) and
Marc (bottom) using a Sony EVI-D100 video
camera.

Several results are presented here, encompassing
various speakers with diverse lip shapes either
showing a closed or open mouth. Some of the
images have been acquired via a camera-mounted
w.r.t the head, others have been obtained
with the widely used Sony EVI-D100 camera.
Finally, some images (fig. 6) have been acquired
under asymmetric lighting conditions. All the
parameters (namely «, 3, v and 7) have been
set up equal to the same values for all the
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Figure 6: From speech to image: from left to right:
Lip area image, contours manually extracted, ex-
traction of the lip contours by the by the presented
approach, superposed results.

experiments to account for the robustness of
the method. For the last results provided ((fig.
6), second images), the contours have been
delineated by a speech processing ’expert’ for sake
of comparison. Although the maximum vertical
distance between both (manual and obtained with
our algorithm) contours never exceed five pixels, it
has been found inadequate for speech-from-image
applications. Furthermore, a detailed study of
the lip contour manually extracted by a speech-
processing specialist has proven that the provided
contours do not always rely on image processing
information such as edges, clustered areas, etc.

5 Conclusion

In this paper, the theory behind the logarithmic
hue-like colour space has been developed. Some
improvements of the active contours theory, ap-
plied to lip contours extraction, have enhanced the
robustness of the results. Furthermore, compar-
ison between the results expected by speech pro-
cessing ’expert’ and our results has partially proven
the inadequacy of image processing based methods
for audio-visual recognition applications. However,
it does not jeopardize the relevance of the proposed
method for applications such as 3D face synthesis
and low-bit rate coding videoconferencing. Cur-
rently, developments towards 3D lip contours ex-
traction (via stereovision), 3D lip synthesis using
a 3D generic model and derivation of the active
contour stiffness inverse matrix formula for open
snakes are underway.

References

[1] E.D. Petajan, B. Bischoff, D. Bodoff, and
N.M. Brooke. An improved automatic lipread-
ing system to enhance speech recognition.
CHI88, pages 19-25, 1988.

[2] B. LeGoff, T. Guiard-Marigny, M. Cohen, and
C. Benoit. Real-time analysis-synthesis and
intelligibility of talking faces. 2nd ETRW on
Speech Synthesis, pages 53-56, 1994.

[3] G. Loy, R. Goecke, S. Rougeaux, and A. Zelin-
sky. Stereo 3D lip tracking. International

34

[5]

8]

[9]

[10]

[11]

Conference on Conitrol, Automation, Robotics
and Computer Vision, December 2000.

L. Reveret. Conception and evaluation of an
automatic system for labial gestures tracking.
PhD thesis (in french), Institut National Poly-
technique de Grenoble, 1999.

P. Delmas. Lip Contour Extraction by Means
of Active Contours. Application to multimodal
communication. PhD thesis (in french), Na-
tional Polytechnic Institute of Grenoble, 2000.

M. Liévin. FEntropico-logarithmic analysis of
colour video-sequences applied to segmenta-
tions and tracking of speakers face. PhD thesis
(in french), Institut National Polytechnique
de Grenoble, 2000.

M. Jourlin and J-C. Pinoli. Image dynamic
range enhancement and stabilization in the
context of the logarithmic image processing
model. Signal Processing, 41(2):225-237, Jan-
uary 1995.

P. Radeva and E. Marti. Facial features
segmentation by model-based snakes. Inter-
national Conference on Computer Analysis of
Images and Patterns, 1995.

A.L. Yuille, P.W. Hallinan, and D.S. Co-
hen. Feature extraction from faces using
deformable templates. International Journal
of Computer Vision, 8(2):99-111, 1992.

Z. Xue, S.Z. Li, D. Shen, and E.K. Teoh.
A novel bayesian shape model for facial fea-
ture extraction. International Conference on

Control, Automation, Robotics and Computer
Vision, December 2002.

T.F. Cootes, T.J. Taylor, D.H. Cooper, and
J. Graham. Active shape models: Their train-
ing and application. Computer Vision and
Image Understanding, 61(1):38-59, January
1995.

M. Turk and A. Pentland. FEigenfaces for
recognition.  Journal of Cognitive Neuro-
science, 3(1):71-86, 1991.

M. Kass, A.Witkin, and D. Terzopoulos.
Snakes: Active contours models. Interna-
tional Journal of Computer Vision, pages
321-331, 1988.

A. Tikhonov and V. Arsenine. Meéthodes de
résolution de problémes mal posés. MIR, 1974.

B. Leroy. Deformable templates applied to face
recognition. PhD thesis (in french), Université
Paris IX-Dauphine, June 1996.

Image and Vision Computing NZ





