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Abstract 

The paper discusses a vision-based framework for the analysis of defects on a grit-blasted or spray-painted 

metal surface. The system employs commodity, off-the-shelf hardware and tailor-made software, with user-

friendly interface, making it cost effective yet accurate. A picture of the surface (1mx1m) is captured by a colour 

CCD camera and processed by a Frame Grabber card at a resolution of 320x240 pixels. Presented in the paper is 

a blob identification technique, using a two-pass sequential algorithm, which is used to locate the defects. 

Closely spaced defective blobs are merged and area-thresholding is done to eliminate noise. To desensitize the 

system to variations of light intensity, the YUV colour space model is used. The system reports the ‘outer 

extent’, coordinates of the centre and the area of up to 5 defective spots. The processing is fast and is done in real 

time. The system has been tested indoors under varying light intensity. Successful field trials have been 

conducted at the Jurong Shipyard, Singapore. 
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1 Introduction 

When ships come to the dry dock yards for repair, one 

of the major work done on its outer surface is high 

pressure blasting with grit to remove rust, paint and 

sludge. The surface is then spray coated with fresh 

paint. The entire process is manual, expensive and 

environmentally hazardous. The ship repair industry 

requires an inexpensive system to automate this entire 

process to increase worker safety, reduce cost and 

minimise the wastage of grit and anti-fouling paint, 

thereby increasing environmental compliance. 

Additionally, the system must be user friendly and 

easy to operate requiring minimal effort to train the 

software to recognise colours. 

The grit-blasting equipment developed by our team is 

shown in Figure 1. In the blasting process, there are 

often pockets where the cleaning is below standard as 

shown in Figure 2. In the manual process, the operator 

directs the hose to the defective area and re-blasts it. 

The same is true for spray painting. However, in an 

automated process, we need a visual inspection 

system to locate the defective areas so that the 

blasting hose (or the spray painting gun) can be 

automatically repositioned to re-blast (or repaint). Self 

Organising Map (SOM) algorithms are currently 

employed for surface inspection [1], which are slow 

as compared to the technique proposed here. 

Since the blasting or painting is done using a 

mechanised X-Y positioning robotic arm, the visual 

inspection system must calculate the ‘outer extent’ of  

Figure 1: Grit-blasting robotic-arm 

the defective blob so that the defective spots can be 

redone. The centre of a blob and its area is calculated 

for statistical data and process analysis. Image 

segmentation and colour thresholding is done to find 

the size, position and extent of the defective blobs. 

Colour training of the software is done in the YUV 

colour space as it gives the advantage of segregating 

the luminance band from the chrominance band. This 

makes the vision inspection system more robust in the 

face of varying light intensity. A fast YUV colour 

look-up table (LUT) mechanism has been 

implemented to greatly improve the processing speed.

The system has wide ranging applications not only in 

the ship repair industry, but also in the general sheet 

metal fabrication industry where automated vision 

inspection is required. Since the vision system is 

18 Image and Vision Computing NZ



based on commodity hardware, it is cheap, yet 

effective. 

Figure 2:  Below-standard blasted surface 

2 System Hardware Description 

The essential system components are the manipulator, 

the grit-blasting nozzle with suction cone, spray gun 

for painting and the vision inspection hardware. These 

are described in the following sub-sections.

2.1 The manipulator

The robotic arm (manipulator) is essentially an X-Y-Z 

positioning system carrying one grit-blasting nozzle 

and one spray-painting nozzle. It is mounted on a 

cherry picker as shown in Figure 3. The motion is 

controlled by pneumatic cylinders to carry out all X-

Y-Z movements. Pneumatic breaking is used for 

precise point positioning. The stroke distances for X, 

Y and Z axis are 150cm, 150cm and 30cm 

respectively with positional accuracy of 5mm and 

variable speed of 0.1 to 0.3m/s in any axis. The 

operator can manually control the position and 

movement of the nozzles or program it to follow a 

pre-defined trajectory. 

Figure 3: Manipulator on a cherry picker 

2.2 Grit Blasting Hardware 

The grit-blasting nozzle spouts grit, mixed with air, at 

high pressure to strike the surface to be cleaned. The 

nozzle is enclosed within a vacuum cone which is 

used to suck back the grit, which would otherwise fall 

to ground, and dust. This pollutes the atmosphere less 

and the grit which is collected can be reused. 

2.3 Spray-Painting Hardware 

It consists of a spray gun which mixes paint with 

pressurised air before discharging through a nozzle. 

The nozzle comes in different bore size and can be 

changed for different paint viscosities. The air 

pressure can also be altered.

2.4 Vision Inspection Hardware 

The vision inspection system consists of a Pulnix 7EX 

NTSC colour CCD camera and a FlashBus MV Pro 

frame grabber card which is plugged into a PC. The 

camera is mounted by the side of the X-Y-Z 

positioning arm at a fixed distance of 1m from the 

inspection surface. The field of view of the camera is 

an area of 1m x 0.75m. To protect the camera from 

dust and paint, it is housed in an air-tight chamber 

with clear glass in front. 

The image is captured at a resolution of 320x480 

pixels at a sampling rate of 30Hz. The odd and even 

fields of the interlaced image are processed 

separately. Hence the effective image resolution is 

320 x 240 delivered at a sampling rate of 60Hz. Each 

pixel covers an area of 3.125mm x 3.125mm. The 

captured image is processed using a Pentium II PC 

(450MHz, 128MB RAM). The frame grabber card 

was configured for off-screen image capture, as 

shown in Figure 4. 

Figure 4: Image capture in off-screen capture mode 

3 Operation Sequence

After a surface section has been blasted (or painted), 

the manipulator moves to the next section such that 

the camera now looks at the section that has just  been 

blasted (or painted). Once the surface has been 

visually inspected and no defects are detected, the 

blasting (or painting) starts for the new section. 

However, if defects are detected, the manipulator is 

positioned to re-blast (or re-paint) the defective areas 

of the previous section. While the image is captured 
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and analysed, the blasting (or painting) is put on hold 

so as not to affect the image quality due to vibrations 

in the manipulator structure. 

4 Blob Detection using Color 
thresholding

Several techniques for colour component 

identification have been presented in [2]. A blob 

detection technique has been successfully employed 

to track moving objects [3] with colour patterns. In 

the proposed method for visual inspection, the 

software is trained to recognise the background colour 

– the paint colour in the case of spray painting - and 

the YUV thresholds are defined. In the calibration 

phase, the lower and upper limits of Y, U and V 

ranges may be manually tweaked for best results 

under varying light intensities. On initiation of 

inspection, it searches through the image, testing if a 

pixel does not belong to the calibrated background 

colour. The ‘non-member’ pixels are then grouped 

together to create the ‘defective’ colour patches. 

Component labelling uses the sequential algorithm, 

which is a two-pass labelling technique. The labels 

are identifiers that are incremented starting from the 

value of 1. Ideally the number of labels used is equal 

to the number of ‘defective spots’ in the image. 

The procedure of testing the membership and 

grouping the pixels is made of 5 steps combined into 

two passes.

A. FIRST PASS (Steps 1 to 4) 

1. Scan the image in the incremental window 

from left to right, top to bottom 

2. If the pixel in the image is within the YUV 

threshold values of the colour of interest, then 

(a) If only one of its upper and left neighbours 

has a label, then copy the label. 

(b) If both upper and left neighbours have the 

same label, then copy that label. 

(c) If both upper and left neighbours have 

different labels, then copy the upper pixel’s 

label and enter the labels in an equivalence 

table as equivalent labels. 

(d) Otherwise assign a new label to this pixel 

and enter this label in the equivalence 

table. 

3. Check if there are more pixels to consider then 

go to step 2, otherwise proceed to step 4.

4. Find the lowest label for each equivalent set in 

the equivalence table – prepare the equivalence 

table

B. SECOND PASS (Step 5)

5. Scan the picture. Replace each label by the 

lowest label in its equivalent set.

Figure 5 shows a representation of the binary image 

where the 0's represents the background of the image 

and the 1's represent the objects of interest, the 

defective spots. It can be seen that there are two 

objects of interest in this image, one in the left part 

and the other in the right. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 1 0

0 1 1 1 1 0 0 0 0 1 1 0 1 0

0 1 1 1 1 1 1 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5: The binary Image

Figure 6 shows the image after the first pass of the 

algorithm. Different objects have different labels. 

However due to a weakness in the first pass of the 

algorithm some of the objects have multiple labels 

associated with them, for example the object on the 

left with labels 3 and 1 and the object on the right 

with the labels 2 and 4. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 2 0

0 3 1 1 1 0 0 0 0 4 4 0 2 0

0 3 1 1 1 1 1 0 0 4 4 4 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6: The image after the first pass

Figure 7 shows the image after the second pass of the 

algorithm, which resolves the problem of multiple 

labels for single objects. Having identified the 

separate objects, the centre of an object is calculated 

using a centre of gravity calculation. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 2 0

0 1 1 1 1 0 0 0 0 2 2 0 2 0

0 1 1 1 1 1 1 0 0 2 2 2 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7:  Image after second pass
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5 Computing Area, Centre and 
extent of defective spots 

5.1 Area thresholding and spot merging

After all the ‘defective spots’ have been identified and 

labelled and before their location is computed, area 

thresholding is done for two reasons – very tiny spots, 

below a certain threshold, are discarded as noise and 

spots which are very close to each other are merged. 

When closely spaced defective spots are merged, the 

re-painting (or re-blasting) process becomes more 

efficient as the spray head has to travel to the ‘merged 

defective spot’ only once. The noise limiting 

threshold and the minimum separation distance for 

defective spots to be merged can be altered from the 

applications GUI. 

5.2 Locating the defective spots

For a binary image of m x n pixels, the area A and 

position 
( , )x y

is calculated using equation (1) and 

equation (2) respectively (zero-order moment and 

centre of gravity). 

1 1

[ , ]
n m

i j

A B i j            (1) 

1 1

[ , ]
n m

i j

jB i j
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 and 1 1

[ , ]
n m

i j

iB i j

y
A

      (2) 

where B[i,j] represents the binary image. 

In the second pass, when each label is replaced by its 

lowest equivalent, the extent of the component 

(MinXco, MaxXco, MinYco and MaxYco) is also 

calculated.

6 A fast LUT access 

6.1 Dealing with RGB colour space

The blob detection algorithm can be implemented on 

commodity hardware for visual inspection of surfaces. 

The image digitization is done using the FlashBus 

MV Pro frame grabber card which provides pixel 

colour information in RGB. A convex partition of the 

RGB color space created for each colour identifier, as 

shown in Figure 8, was explored [4].  This convex 

partition is specified by a range of RGB values 

namely, Rmin - Rmax, Gmin - Gmax, Bmin - Bmax.

Blob identification based on RGB colour space was 

not found to be useful and reliable in the face of 

varying light intensities as the luminance could not be 

separated from chrominance. Instead a convex colour 

subspace, defined in the YUV colour space was 

implemented with greatly enhanced robustness, as Y 

corresponds to light intensity component of the 

colour. 

G

B

R

Convex color
subspace for an

object

 Figure 8:  Convex color subspace 

6.2 Defining YUV thresholds 

To define the YUV colour subspace, a sample of the 

image is captured and the colour of interest is zoomed 

in. In the zoomed image a rectangular region is 

defined, within which, each pixel is processed to 

calculate its YUV value using the colour space 

transformation matrix (3). 

B

G

R

V

U

Y

081.0419.05.0

5.0331.0169.0

114.0587.099.02

)(713.0

)(565.0

YRV

YBU
          (3) 

From the computed YUV values, the MinY, MaxY, 

MinU, MaxU, MinV and MaxV are set. A user may 

manually fine-tune these thresholds using the 

application’s GUI. Usually a wider range of Y values 

are desirable giving it more bandwidth to account for 

varying light intensity. 

6.3 Membership testing 

For the two-pass sequential algorithm for blob-

detection, each RGB colour pixel of an image needs 

to be tested to determine its colour sub-space 

membership. Hence the mechanism used for 

thresholding warrants close scrutiny and requires 

careful efficiency consideration. Since the colour 

boundaries are defined in YUV colour space, each 

pixel would have to be converted from RGB to YUV, 

using equation (3), before testing membership using 

equation (4). This is computationally very intensive 

and the processing will be very slow. 

IF ( (Y >= MinY) AND (Y <= MaxY) 

       (U >= MinU) AND (U <= MaxU)

(V >= MinV) AND (V <= MaxV) ) 

THEN pixel_of_interest = TRUE            (4)

Equation (3) requires 5 multiplications and in 

equation (4), it may require up to 6 conditional 
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branches to determine a pixel of interest. To improve 

efficiency, implementations using Boolean valued 

decomposition of the multidimensional threshold have 

been tested [5]. This, however, still requires the 

colour space to be transformed from RGB to YUV. 

6.4 Colour Look-Up-Table (LUT) 

Our implementation uses a large one dimensional 

colour look-up-table (LUT) and an indexing 

technique based on the RGB value of the pixel. The 

index is created, using equation (5), which is used to 

access the LUT. 

index = R*65536 + G*256 + B                 (5) 

For a 24-bit RGB colour output from the frame 

grabber card, the maximum value of R, G or B is 255. 

Thus the size of the LUT is 256x256x256 bytes 

(16MB). 

6.4.1 Posting the LUT

Once the YUV thresholds have been defined for each 

colour, the LUT is posted with colour identities (IDs) 

for the entire RGB colour space as shown in Figure 9. 

Figure 9: Posting the LUT with colour ID 

The time it takes to update the LUT is not of any 

consequence as it is done during the colour tuning 

phase. It is important that during the inspection time, 

the processing should not take unduly long and hence 

repeated multiplications and logical ANDing must be 

avoided. 

6.4.2 Inspecting the LUT 

To test whether a pixel is in the YUV sub-space, 

given its RGB value, the index is calculated using 

equation (5) and the LUT content at that indexed 

location is tested as shown in Figure 10. 

To further improve the processing speed, the 

multiplications in equation (5) were replaced by shift- 

left operations as in equation (6). 

index = R*<<16 + G*<<8 + B            (6) 

Figure 10: Inspecting the LUT 

7 Experimental results 

The defective colour spots on a given background 

were simulated in the lab environment and the system 

thoroughly tested before the field trials.

The vision system and algorithms were tested in two 

phases. In the first phase, a piece of actual grit-blasted 

metal plate was inspected in controlled light 

conditions in the lab. The second phase of tests was 

carried out in Jurong Shipyard, Singapore under 

actual operating conditions. 

The outer boundaries of the defective spots, are 

calculated with an accuracy of ± 3mm. Light intensity 

variation from 600 to 1100 lux have been tested with 

no deterioration in the accuracy and repeatability of 

measurements. Defects, as small as 5mm x 5mm, 

were detected. 

The entire picture is analysed and data calculated in 

13ms which is well within the frame refresh rate of 60 

Hz. The technique presented here compares 

favourably to the color threshold based approaches 

discussed in [6]. The drawback of the proposed LUT 

is, its size being huge, it occupies a substantial chunk 

of system RAM. This tends to slow down processing 

on processors which do not have large L2 cache like 

Pentium III PCs as it results in frequent disk file 

swapping. 

The graphical user interface is shown in Figure 11. 

The system can be trained to recognise 3 different 

background colours. 

Future work involves processing the image at a 

resolution of 640 x 480 to enhance the accuracy with 

which the outer boundaries are calculated and to 

detect even smaller defects. The vision inspection 

system has to be integrated with the grit-blasting (and 

spray-painting) control mechanism so that after the 

location of the defects are known, the detective areas 

can be automatically re-blasted (or repainted). 

8 Conclusions 

The paper presented efficient algorithms for blob 

identification using fast access to colour look-up-

table. The system is inexpensive as it is based on 

commodity hardware. The accuracy of detection is  

for (r=0; r<256; r++) 
 for (g=0; g<256; g++) 
  for (b=0; b<256; b++) 
   { 
    y=(299*r+587*g+114*b+500)/1000; 
    u=(565*(b-y) + 128000)/1000; 
    v=(713*(r-y) + 128000)/1000; 
    index = r*65536 + g*256 + b; 

    //-- initialise on update -- 
    LUT[index] = NoCOL;   

    //-- Reference Colour range -- 
    if ( (MinY<=y && y<=MaxY) && 
         (MinU<=u && u<=MaxU) && 
         (MinV<=v && v<=MaxV)) 
    { 
     LUT[index] = RefCOL; 
    } 
   }

index = r*<<16 + g*<<8 + b;
if ( LUT[index] == RefCol ) 
//-- it is a desired pixel 
{
 //-- process the pixel 
}
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Figure 11:  User Interface depicting two defects on simulated defective surface

very high and works under varying light intensities. 

The system finds application not only in ship repair 

industry but, in general, in any sheet metal fabrication 

process where automated inspection of surface is 

required. 
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