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Abstract

Robotic tasks in meatworks are faced with the inevitable high variation between carcasses. If the orientation of
the carcass in 3D can be determined, subsequent handling and feature identification tasks can be simplified. This
paper presents a method for estimating the pose of an object where bilateral symmetry is the only shape property
that is assumed. The method operates with incomplete 3D range data suffering from self occlusion, as is obtained

from a single viewpoint.
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1 Introduction

The technique presented in this paper was motivated
by our work with animal carcasses. However there is
nothing in the technique that is specific to these partic-
ular shapes and it is thus more generally applicable. To
assist in identifying features on the carcass, we wished
to estimate the pose of part of the carcass. The example
used here is the head of the carcass. Each head has a
different shape, it may only have some of the dominant
features such as ears and horns, and its pose was only
constrained to within some tens of degrees of a nom-
inal orientation. To further complicate the task, only
an incomplete 3D surface representation of the carcass
was available.

Heads removed from carcasses are typically suspended
from a chain conveyor. A laser range sensor with a
vertical scan direction was mounted in a fixed position
to one side of the path of the suspended heads. The
motion of the heads past the scanner enabled 3D data
to be obtained of the surface facing the scanner. The
3D sensor data is naturally represented in a cylindrical
coordinate system with the principal axis parallel to the
direction of motion of the heads and passing through
the sensor centre. In this configuration, points on the
surface are visible to the sensor at most once, and thus
any point that is occluded will not be viewed again.
Although not strictly a single viewpoint sensor, the lim-
itations imposed by this arrangement are equivalent to
a single viewpoint.

We have developed a technique to exploit the natural
symmetry of animal carcasses, for the estimation of
pose.

Symmetry is present in many natural and manufactured
objects [1], and is an important cue to the human visual
system both for recognising objects and determining
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their relative position and orientation. In contrast to
many manufactured objects, the symmetry of natural
objects is often far from perfect. Despite this, we read-
ily detect the presence of an underlying symmetry, and
can subjectively assess departures from perfect sym-
metry, even if we are unable to quantify such imperfec-
tions.

In the field of computer vision, symmetry has been
used in a variety of applications. The human face is a
classic example of a symmetrical object and symmetry
has been exploited in a number of ways for face detec-
tion and orientation estimation, mainly using 2D im-
ages [2, 3]. Continuous symmetry measures have been
used in the study of molecular structure [4] and more
recently the techniques were applied to improving 3D
reconstruction from sequences of 2D images [5] where
symmetrical features of a chair are utilised. The plane
of symmetry has been used in range images to estimate
the pose of human faces [6]. If an object is bilaterally
symmetric, the principal axes can be used to find the
plane of symmetry, although this is not reliable if only
partial data is present [7, 8].

Techniques that exploit symmetry for pose estimation
typically require either a complete representation of the
object, or the identification of particular features that
can be used in forming correspondences. A further
technique that is often used in estimating the pose is the
registration of a set of data with a model, and various
approaches have been used to solve this problem [9,

], but such techniques obviously begin with prior
knowledge of a model.

Our technique makes no particular assumption about
the shape of the object other than that a plane of sym-
metry exists. It does not require any other prior knowl-
edge of the shape such as the identification of features
that exist in symmetrical pairs. We have also avoided



any use of local curvature measures as these are sen-
sitive to noise or, if filtering is employed, assumptions
must be made about the curvature characteristics.

2 Basis of pose estimation technique

The method estimates the pose of an object by locating
the plane of symmetry. The object is assumed to be
symmetrical and this is exploited both for efficiency
and to make the method more robust.
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Figure 1: World and object coordinate systems.

Consider an object as in Figure 1, where there is a
dominant plane of symmetry, and profiles parallel to
the yoz, plane in the object coordinate system, are sym-
metrical about a line parallel to the y, axis. In the
following discussion, orientations are defined in terms
of rotations about axes, such as X-rotation (about an X-
axis), and a curve representing the surface boundary of
an object in a single cross-section through the object is
referred to as a profile.

If the data set is reflected about a plane, the position
of that plane producing the best measure of similarity
between the original and reflected data sets, gives an
estimate of the orientation of the object. Strictly, this
is true only under certain circumstances. If an object
is only X-rotated, the angle of X-rotation can be deter-
mined from a single profile parallel to the yyzy plane.
If an object is both X-rotated and Y-rotated, the sym-
metry is not necessarily preserved in profiles parallel
to the ywzw plane, and thus except in special cases,
such as a prism, it is not possible to determine either
component from any number of such profiles. If the
object is only Z-rotated, it will still appear symmetrical
about the xwYyw plane, although the profiles obtained
will be different to those before rotation.

Notwithstanding these limitations, early tests using
both synthetic and real data obtained from suspended
heads of cow carcasses gave encouraging results.
In the presence of 10 or 20 degrees of Y-rotation,
the X-rotation could be estimated from the apparent
X-rotation of a number of profiles spaced down the

head, even though some individual profiles might
give a result that was not near the true X-rotation.
We imposed a requirement that the method should
work with data obtained from a single viewpoint.
This means that a limit of operation is reached when
an object is rotated such that symmetry is no longer
visible from the single viewpoint.

To develop the basic principle into a practical imple-
mentation, we considered two basic approaches. One
was to perform the entire pose estimation process in a
single step on the whole 3D data set (albeit an incom-
plete representation of the object) and the other broke
the process down into operations on 2D profiles taken
through the data set, followed by a combined analysis
of the results from the individual profiles. The second
approach, presented here, reduces the dimensionality
of each step, giving a corresponding reduction in com-
putational complexity.

3 Estimation of X-rotation using a
single profile

This section covers the basic principles of X-rotation
estimation using a single profile parallel to the yqz,
plane. We will then extend this to the use of multi-
ple profiles, and the estimation of additional rotations
about other axes.

When a profile is reflected, translated and rotated
(called a reflected profile for conciseness), a measure
of similarity can be made between the original and
reflected profiles.  Simplistically, the orientation
yielding the greatest similarity between the original
and reflected profiles is the estimated pose of the
object, and the measure of similarity is a measure of
symmetry.

3.1 Symmetric and

straints

geometric con-

The assumption that there is a plane of symmetry can
be used to restrict the number of poses considered,
because some do not propose a symmetrical object.
We call this the symmetric constraint. Figure 2
shows a profile (solid) and three different translated
and rotated reflections of the profile (dashed). The
example in Figure 2(a) violates the symmetric
constraint. We are also not interested in an arbitrarily
symmetrical object where the profiles are separated as
in Figure 2(b). The reflected profile may be generated
by reflecting, translating and rotating the original
profile, or by reflecting the original profile about a line
that is translated and rotated, but still intersects the
original profile, as in Figure 2(c). The second option
automatically satisfies the symmetric constraint and
guarantees that the profile and its reflection are not
separated.
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Figure 2: Original profile (solid) and its translated and
rotated reflections (dotted) resulting in (a) asymmetri-
cal, (b) symmetrical but separated and (c) symmetrical
objects.

Knowledge of the sensor position, together with the
assumption of symmetry, can be used to test the va-
lidity of the recovered object shape. This constraint is
illustrated in Figure 3 where the original profile ABC,
is reflected about line PQ giving the reflected profile
A’B'C’. In this proposed pose, the section of the re-
flected profile between A’ and B’ implies that the sen-
sor should also have collected data beyond point C to-
wards point A’. Clearly, for this proposed pose, there
is a region bounded by CA’PC that is geometrically
inconsistent with the premise of symmetry. We call
this the geometric constraint. In Figure 3, any part of
the reflected profile that is in the region below line PC
and any part of the original profile that is in the region
above line PC’ violates the geometric constraint. The
geometric constraint is used when assessing the mea-
sure of similarity between a profile and its reflection. It
heavily penalises impossible solutions, and is a power-
ful constraint in forming the measure of similarity.

a
|

Figure 3:
constraint.

Proposed pose that violates the geometric

3.2 Measure of similarity

We use a simple measure of similarity to indicate how
symmetrical an object would be in a given proposed
pose, using the absolute area between the original and
reflected profiles, and the length of the profile. In Fig-
ure 3, the measure of area between the corresponding
portions of the profiles in the region between points B
and C is simple, but the portions AB and A’B’ have no
corresponding portion. Considering the portion A'B/,
we do not know where the corresponding part of the
original profile is because of self occlusion, but we do
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know that at least it does not extend below the line CP,
so we take the area between A’B’ and the line CP. The
measure of similarity Smy, , for a single profile,

|
smProf = Areag,, {Pirof

Cor

+ AreaGeomVioI (1)

where in Figure 3; Area.,, is the area between the pro-
file and its reflection between points B and C, I, is
the entire length of the profile ABC, I, is the length
of the overlapping portion between points B and C, and
Areag, mviol 1 the area between A’B and the geometric
constraint line CP, and between AB and the geometric
constraint line C'P. Areag, i 1S Z€ro if the geometric
constraint is not violated. Scaling the area between
the corresponding portions by the ratio of the profile
length to the overlapping length, balances the natural
increase with increasing overlap length which would
give a preference to small overlap.

This measure of similarity gives a value of zero for
perfect symmetry, and increases as the symmetry de-
grades. In general we will not see perfect symmetry
and so the orientation giving the lowest value of the
measure of similarity is chosen as the orientation of
best symmetry.

4 Estimation of X-rotation using mul-
tiple profiles

In practice we can use more than a single profile of an
object to estimate the pose. Estimating the X-rotation
of a number of individual profiles results in a range
of values. There are several factors that contribute to
this. Natural objects that are not perfectly symmetrical
will give different values at different locations down the
axis of the object, even if there is only one dominant
plane of symmetry. The rotation estimated by each of
a set of profiles spaced over the length of a suspended
cow’s head is typically grouped about several values
corresponding to the multiple planes of symmetry that
can be detected from the incomplete data that is avail-
able from a single viewpoint. To estimate the rotation
of the object from the individual profile rotation esti-
mates, we performed a series of relatively simple steps.

1. Estimate the X-rotation for each profile as in Sec-
tion 3

2. Cluster the values of X-rotation and determine the
cluster boundaries

3. For each cluster

(a) within the bounds of the cluster obtain the
best measure of symmetry for every profile

(b) ignore abnormally poor measures of similar-
ity from ends of object



(c) ignore measures of similarity that are grossly
different to the others for this particular ob-
ject

(d) calculate a weighted measure of similarity
for the whole cluster

4. Choose the cluster with the best weighted measure
of similarity

5. Estimate the rotation

The calculation of the measure of symmetry for each
cluster, combining measurements from all profiles, was

z (S'mProf : IProf)

B profiles

S = 2
mCIUS 2 IProf ( )

profiles

where Sm,,; is the similarity measure for a single pro-
file as defined in equation 1; and I is the length of
a single profile. This weights the similarity measure
giving the greatest weighting to the longest profiles;
those for which there is the most information. The
cluster with the best measure of similarity is chosen and
the X-rotation estimate is obtained from the median of
all of the values taken from individual profiles.

5 Estimation of pose in the presence
of multiple rotations

The method covered in earlier sections will not neces-
sarily give valid results in the presence of Y-rotation.
However, in the presence of a significant amount of Y-
rotation, a reasonable estimate of X-rotation can still
be obtained. Furthermore, from this first estimate, we
are able to use an iterative approach to refine both the
X and Y-rotation estimates. This avoids what would
otherwise be a computationally intensive search for the
pose in a higher dimensional space.

The method may be summarised in the following se-
quence of steps:

1. Choose a small
Y-rotations

number of widely spaced

2. Determine the X-rotation and measure of symme-
try for each Y-rotation

3. Choose the Y-rotation and X-rotation giving the
best measure of symmetry

4. Determine a correction to the Y-rotation estimate

5. Estimate the X-rotation at the corrected Y-rotation

6. lterate over steps 4 to 5
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The key to this process is the ability to determine a cor-
rection to the Y-rotation estimate using the X-rotation
estimate.

A simple case involving two profiles of an object that
has been X, Y and Z-rotated is illustrated in Figure 4
with the top profile offset behind the other due to the
Z-rotation. Points p and q on profiles P and Q are the
points where the proposed plane of symmetry intersects
the profiles. Figure 4(a) and (c) show the two profiles
in plan and elevation. This elevation suggests a mis-
leading correction to the Y-rotation estimate because
of the presence of both the X-rotation and the offset
between the two profiles. Correcting for the estimated
X-rotation as in Figure 4(b) and (d), the effect of the Z-
rotation is removed, and the angle of the line pq gives
an estimate & of the Y-rotation error.
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Figure 4. Correction of Y-rotation estimate. (a) plan
view, (b) plan corrected for X-rotation, (c) elevation,
(d) elevation corrected for X-rotation.

The third rotation, Z-rotation, can not be determined
without attaching a meaning to the shape of the object.
Although it can not be determined by symmetry alone,
having estimated the pose and the position of the plane
of symmetry we are able to create a profile in the plane
of symmetry. This profile can then be used directly to
determine the third of the three rotation angles.

6 Results

The method has been tested using both synthetic data
sets [11] and data scanned from real cows. The quanti-
tative results presented here are based on the synthetic
data set because ground truth data could be accurately
determined over a comprehensive range of orientations.
When working with real cows’ heads, the ground truth
orientation was independently manually estimated.

Figure 5 shows errors in estimating the orientation of
cows’ heads that had been rotated to 343 different ori-
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Figure 5: Distribution of errors in estimation of rotation of 343 cows’ heads that have been simultaneously X,
Y and Z-rotated in the range +30°; (a) error in estimation of X-rotation, (b) error in estimation of Y-rotation, (c)
error in estimation of direction of normal to plane of symmetry.

entations involving simultaneous X, Y and Z-rotations
in the range of +£30°. The three histograms show the
distribution of the errors in estimation of the individual
components of rotation and the error in estimation of
the direction of the normal to the plane of symmetry.

Finally, Figure 6 shows data scanned from a real cow’s
head complete with horns, ears and a flap of hide vis-
ible at the right rear of the head where the head was
separated from the neck. Figure 6(a) shows the head in
the orientation in which it was scanned, and Figure 6(b)
shows a view with the head re-oriented according to
the estimated X and Y-rotations. In Figure 6(b) the
appearance to the left of the nose region is deceptive
and it does not look symmetrical. This is because some
of the surface was not visible from the viewpoint of the
sensor. The geometric constraint enables a correct in-
terpretation to be made in the presence of such missing
data. A further example of missing data is evident near
the base of the ear on the left and inside the ear on the
right, as neither region was visible from the viewpoint
of the sensor.

There are several fundamental limits on the application
of the method, and how close an object must be to the
a priori assumption of correct orientation. The object
must possess a degree of bilateral symmetry as this is
the only property that is exploited, and the solution
must be unique within the orientation bounds consid-
ered, because no preference is given in the presence of
multiple planes of symmetry.

A further limitation exists, particularly in the presence
of Y-rotation. Profiles corresponding to an incorrect
proposed Y-rotation may not possess sufficient sym-
metry to enable a reliable result to be achieved. This
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Figure 6: View of a real cow’s head, (a) oriented as
scanned, (b) re-oriented by X-rotation of 39° and Y-
rotation of 3°.

is particularly evident when nearby cross-sections per-
pendicular to the plane of symmetry are significantly
different. Such a region exists in the eye region of a
cow’s head where the shape of the forehead above the
eyes is markedly different from the shape of the nose
region below the eyes. When multiple profiles are used
to estimate the pose, this can be resolved.

7 Conclusions

This paper proposed a method for determining the pose
of a symmetrical object from 3D surface data when no
features or other knowledge of its shape was available.
We have developed this method to the point where it
works reliably on very irregular objects. It enables the
orientation to be determined and expressed as rotations
about the coordinate system axes. The underlying prin-
ciple, estimating symmetry by finding correspondences
in the reflection of a data set, is a problem of high
dimensionality. We have reduced the problem to a se-
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ries of steps of lower dimensionality. We have also
explicitly incorporated a solution to the problem of in-
complete data due to self occlusion.
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