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In this paper, we study a two-lane totally asymmetric simple exclusion process (TASEP)
coupled with random attachment and detachment of particles (Langmuir kinetics) in
both lanes under open boundary conditions. Our model can describe the directed mo-
tion of molecular motors, attachment and detachment of motors, and free inter-lane
transition of motors between filaments. In this paper, we focus on some finite-size effects
of the system because normally the sizes of most real systems are finite and small (e.g.,
size ≤ 10, 000). A special finite-size effect of the two-lane system has been observed,
which is that the density wall moves left first and then move towards the right with the
increase of the lane-changing rate. We called it the jumping effect. We find that increasing
attachment and detachment rates will weaken the jumping effect. We also confirmed that
when the size of the two-lane system is large enough, the jumping effect disappears, and
the two-lane system has a similar density profile to a single-lane TASEP coupled with
Langmuir kinetics. Increasing lane-changing rates has little effect on density profiles after
the density reaches maximum. Also, lane-changing rate has no effect on density profiles
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of a two-lane TASEP coupled with Langmuir kinetics at a large attachment/detachment
rate and/or a large system size. Mean-field approximation is presented and it agrees with
our Monte Carlo simulations.

Keywords: Langmuir kinetics; two-lane TASEPs; density profiles; jumping effects.

1. Introduction

Recently, driven diffusive systems have attracted the interests of physicists be-
cause the systems show surprisingly rich and complex behavior.1,2,3,4,5,6 As a simple
model of driven diffusive systems, asymmetric simple exclusion processes (ASEPs)
have been widely studied in chemistry and physics.7,8 Moreover, ASEPs have been
applied successfully in biology such as gel electrophoresis,9 protein synthesis,10,11

mRNA translation phenomena,12 motion of molecular motors along the cytoskele-
tal filaments,13,14 and the depolymerization of microtubules by special enzymes15

as well as vehicular traffic.16

A totally asymmetric simple exclusion process (TASEP) is regarded as the min-
imal model of ASEPs, in which particles move along one direction. TASEP has
received much attention in modeling intra-cellular molecular transport and related
traffic problems15,17,18,19,20,21,22 in recent years.

MacDonald et al.17 initially used an TASEP to simulate the dynamics of ri-
bosomes moving along messenger RNA chains. Kruse and Sekimoto18 proposed a
two-headed TASEP model to describe molecular motor traffic. In their model, each
motor consists of two heads and each head is attached to a filament. Each filament
is assumed to be moveable. The investigation indicates that the average relative
velocity of filaments is a non-monotonic function of the concentration of motors.
The density and current profiles of motors with different types of microtubule tracks
(e.g., cylindrical geometry and radial geometry) have been investigated by Lipowsky
et al.19

An extension of single-lane TASEPs, incorporating Langmuir kinetics (LK, the
attachment and detachment of particles), has been presented by Parmeggiani et
al.20 Their model is also referred to as the PFF model. Numerical results of the
PFF model show that there are unexpected stationary regimes for large but finite
systems. Such regimes are represented by phase coexistence in both low and high
density regions, which are separated by a domain wall.

A model, incorporating a single-lane TASEP, Langmuir kinetics and Brownian
ratchet mechanism,23 is proposed by Nishinari et al.21 to mimic the movement of
the single-headed kinesin motor, KIF1A. A novel feature in their model is that
there are three states (strong binding, weak binding and no binding) of a KIF1A,
compared to two states (binding or unbinding) in previous models. Their model
can capture explicitly the effects of adenosine triphosphate (ATP) hydrolysis as
well as the ratchet mechanism which drives individual motors. The experimentally
observed single molecular properties in the low-density limit are reproduced and a
phase diagram is presented.
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Most previous work on modeling molecular motor traffic deals with single-lane
systems where particles can move forward or backward, or attach and detach to a
bulk (a collection of sites in a lane except boundaries). Obviously, the description
of the traffic of motors would be more realistic if multi-lane asymmetric exclusion
processes can be considered. Experimental observations24 have found that motor
protein kinesins can move along parallel protofilaments of microtubules and they
can jump between these protofilaments without restraint.

Recently, Pronina and Kolomeisky25 proposed a two-lane traffic model to simu-
late a two-lane TASEP with symmetric lane-changing rules between two lanes, but
without Langmuir kinetics. The computational results suggest that lane-changing
rates have a strong effect on the steady-state properties of the system. In particu-
lar, the particle current of each lane will decrease and particle densities will increase
with the increase of particle coupling. Pronina and Kolomeisky then extended their
model to a more general case where asymmetric coupling is applied.26 It is found
that asymmetric coupling between lanes leads to a very complex phase diagram,
quite different from symmetric coupling. There are seven phases in the TASEP
with asymmetric lane-changing rates, in contrast to three phases found in the sys-
tem with symmetric coupling. In addition, a new maximal-current phase with a
domain wall in the intermediate coupling is reported in Ref.26.

Effects of synchronization of kinks (i.e., domain walls) in a two-lane TASEP
without Langmuir kinetics is investigated by Mitsudo and Hayakawa.27 The asym-
metric lane-changing rate between lanes is used. Moreover, different injection and
ejection rates of particles at the boundaries of two lanes are also considered. The
positions of kinks are reported to be synchronized, though the number of particles
may be different on these two lanes. Reichenbach et al. 28 proposed a generic trans-
portation model by introducing internal states into driven exclusion processes. The
internal states provide a unique way to describe the flow of particles.

More recently, Jiang et al.29 introduced Langmuir kinetics into one lane of a
two-lane system. This has shown that synchronization of shocks on both lanes oc-
curs when the lane-changing rate exceeds a threshold. A boundary layer is also
observed at the left boundary as a finite-size effect. In their model, attachment and
detachment of particles are assumed to occur only on one of two lanes, not both,
which is unable to realistically describe real two-lane or multi-lane molecular motor
traffic.

This paper will investigate the collective effect of attaching and detaching par-
ticles on both lanes of a two-lane system with symmetric inter-lane coupling. In
particular, we will focus on the finite-size effects of the system. The model de-
scribed in this paper is directly motivated by the dynamics of molecular motors,
for instance, unidirectional motion of molecular motors along filaments,30 random
motor (e.g., kinesin) attachments and detachments to filaments,31 and molecular
motors freely changing to adjacent filaments.24 It is expected that the incorporated
process of a two-lane TASEP, Langmuir kinetics and lane-changing can shed light
on the study of the traffic of molecular motors and other particle traffic in biology.
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We investigate the effects of the following parameters on density and current
profiles: (i) Different lane-changing rates ω. We denote Ω = ωN , where Ω is used
to represent the number of lane-changing particles and N is the length of each lane
(i.e., the number of cells in each lane); (ii) Different combinations of attachment
(ΩA = ωAN) and detachment (ΩD = ωDN) rates (for simplicity, we assume that
attachment rate ΩA is fixed but detachment rate ΩD varies); and (iii) Different sys-
tem size N , i.e., the length of each lane. Note that as we only consider symmetric
lane changing, these two lanes are equivalent. We compare results obtained from our
model when Ω > 0 and Ω = 0 (where the two-lane system becomes two separated
TASEPs coupled with Langmuir kinetics). In this way, we can more clearly distin-
guish the effect of different values of Ω on a two-lane system. Finally, mean-field
approximation (MFA) is presented and used to verify our Monte Carlo simulations
(MCS).

The paper is organized as follows. In Section II, we give a description of our
two-lane TASEP model, considering attachment and detachment of particles in
both lanes. In Section III, we present and discuss the results of our Monte Carlo
simulations. In Section IV, mean-field approximation is presented and the quanti-
tative agreement between the Monte Carlo simulations and the mean-field theory
is confirmed. Finally, we give our conclusions in Section V.

2. Model

Our model is defined in a two-lane lattice of N × 2 sites, where N is the length of
a lane. We assume that all particles move from the left to the right, as shown in
Fig. 1. Sites i = 1 and i = N define the left and right boundaries respectively, while
a set of sites i = 2, ..., N − 1 is referred to as a bulk. Particles in the system are
involved in the following processes: lane selection, particle injection into the first
site of a lane, particle detachment from a bulk, particle movement along a bulk,
particle lane-changing between bulks, particle attachment to a bulk, and particle
ejection from the last site of a lane. Thus, we assume that a particle that is injected
to a lane and moves along the lane may be involved in the following processes:

• Lane selection: A lane is randomly chosen.
• Particle injection: If the first site of the selected lane is unoccupied, a par-

ticle will be injected to the site with probability α.
• Particle detachment: A particle can leave the system with probability ωD.
• Particle movement: If a particle cannot leave the system, it can move for-

ward to the next site in the same lane provided that the next site is empty.
If the next site is not empty, the particle cannot advance. In this case, the
particle will check if it can change to the other lane.

• Particle lane-changing: The particle may change to the corresponding site
on the other lane with probability ω if the corresponding site on the other
lane is unoccupied.

• Particle attachment: If a site in a bulk is empty, a particle can attach to
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the site with probability ωA.
• Particle ejection: If a particle reaches the last site of a lane, it will be ejected

from the system with probability β.

Fig. 1. The schematic representation of a two-lane TASEP with symmetric inter-lane coupling,
and the attachment and detachment of particles on both lanes.

The above processes can be described using the following updating rules. As
the two lanes are equivalent, they have the same updating rules. We only list the
updating rules for lane 2. An occupation variable (τ`,i) denotes the state of the ith
site in the `th lane, where τ`,i = 1 (or τ`,i = 0) corresponds to whether the site is
occupied (or empty). Thus, τ2,i refers to the state of site i on lane 2. The rules are:

• Case i = 1. (i) If τ2,1 = 0, a particle enters the system with probability
α; (ii) If τ2,1 = 1 and τ2,2 = 0, then the particle in site (2, 1) moves into
site (2, 2); (iii) If τ2,1 = 1 and τ2,2 = 1, then the particle in site (2, 1) stays
there. No lane change occurs.a

• Case i = N . If τ2,N = 1, the particle leaves the system with probability β.
No lane change occurs.b

• Case 1 < i < N . (i) If τ2,i = 1, the particle may leave the system with
probability ωD; If it cannot leave the system, it moves into site (2, i + 1)
provided τ2,i+1 = 0. If the particle cannot advance, it may change to lane
1 with probability ω if τ1,i = 0; (ii) If τ2,i = 0, a particle enters the system
with probability ωA.

These updating rules for both lanes are illustrated in Fig. 1. For simplicity, we use
a symmetric lane-changing rule. It will be the next step of our work to investigate the

aThe simulation results show that they are essentially the same if lane-changing is allowed on the
first site.
bThe simulation results also show that there are no differences on density profiles whether lane-
changing is considered in the last site.
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effects of asymmetric lane-changing rates on the dynamics of interacting particles.
Normally, there are three types of updating schemes:32 (i) In parallel. Updating

rules are synchronously applied to all sites. A typical application is in vehicular
traffic flow; (ii) In ordered sequence. Positions of particles are updated in an or-
dered sequential manner, e.g., from one end to the other end of a one-dimensional
system; (iii) In random. A site is randomly chosen and it is updated according
to updating rules. Here we use a randomly sequential updating scheme, i.e., the
third scheme, which has been widely used in the simulations of molecular motor
traffic.18,19,20,21,25,26,29

Fig. 2. (Color online) (a) Average density ρ(x), and (b) Current J(x) for different Ω. Ω = 0 is the
thick solid line in the middle ; Ω = 0.2 is the red/light line on the left of the Ω = 0 line; Ω = 100
is the solid line on the right. x = i/N . The system parameters are set to: N = 1000, ΩA = 0.3,
ΩD = 0.1, α = 0.2 and β = 0.6.

3. Monte Carlo Simulations

In this section, the results of our Monte Carlo simulations are presented. As sug-
gested in 20, in large system sizes (N À 1), the Langmuir kinetic rates decrease
synchronously with the system sizes, that is, ΩA = ωAN , ΩD = ωDN and the
bonding constant K = ΩA/ΩD. Similarly, we define Ω = ωN . In simulations, sta-
tionary profiles are obtained by averaging 105 samples at each site. The sampling
time interval is 10N . The first 105N time steps are discarded to let the transient
time out. For the special case when Ω = 0, the two-lane process is reduced to two
separated processes: two one-lane TASEP with Langmuir kinetics. Features of a
one-lane TASEP with Langmuir kinetics have been well studied in Ref.20

Fig. 2 shows average density ρ(x) and current J(x) of one lane of a two-lane
system for different values of Ω, where x = i/N . For a special case Ω = 0, the
two-lane system reduces to two separated single-lane systems. When Ω increases,
we may expect the domain wall always moves in one direction (either to the left or
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right). However, an unexpected phenomenon has been observed in our simulations:
the domain wall first moves to the left slightly, and then moves towards the right
with the increase of Ω (see Fig. 2(a)). This process is more clearly captured in Figs.
3(a) and (b), where the domain walls for Ω ≤ 0.4 are shown. One can see that the
domain wall moves to the left first when Ω increases from 0 to 0.2, and then moves
towards the right when Ω > 0.2. We refer to this feature as the jumping effect to
describe the domain wall (as well as current curve) moving to the left and then to
the right caused by particles jumping between the two lanes. We also find that there
is a critical value, Ωc ≈ 0.2, to distinguish the movement direction of the domain
wall under certain conditions. A similar effect occurs in Ref.29

Fig. 3. (Color online) (a) Average density ρ(x) for small values of Ω; (b) is a locally enlarged
figure of (a). Ω = 0 is the thick solid line in the middle; Ω = 0.2 is the grey/light line on the left
of the Ω = 0 line ; Ω = 0.4 is the red line on the right. x = i/N . The system parameters are:
N = 1000, ΩA = 0.3, ΩD = 0.1, α = 0.2 and β = 0.6.

When ΩA and ΩD increase proportionally, the jumping effect becomes weaker
(comparing Fig. 2(a) with Figs. 4(a) and (b)). This implies that the jumping effect
is also influenced by attachment and detachment rates.

The jumping effect is also observed in a larger system, e.g., N = 10, 000, (see
Fig. 5) when Ω is small. It can be seen that the domain wall moves left when
Ω ≤ 0.3. When Ω > 0.3, the domain wall moves right. For instance, there is an
obvious movement towards right when Ω = 0.4 (see Fig. 5(b)). The critical value
Ωc of Ω varies with a system size, i.e., Ωc changes from 0.2 to 0.3 when the system
size increases from 1,000 to 10,000.

We have also confirmed that the jumping effect in a two-lane homogeneous
TASEP coupled with Langmuir kinetics is a kind of finite-size effect. When the
system size is very large, e.g., N = 100, 000, in our simulations, the jumping effect
almost disappears.

We argue that we need to study and examine finite-size effects, like the jumping
effect because the size of a real system is normally not very large. For example,
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Fig. 4. (Color online) (a) Average density ρ(x) for different Ω. (b) is a locally enlarged figure of
(a). Ω = 0 is the thick solid line in the middle; Ω = 0.2 is the red line on the left and very close to
the Ω = 0 line ; Ω = 100 is the line on the right. x = i/N . The system parameters are: N = 1, 000,
ΩA = 0.6, ΩD = 0.2, α = 0.2 and β = 0.6.

kinesin protein motors are responsible for long-distance transport in a cell. The
length that a kinesin protein motor travels from its origin to its destination is
normally about 100 successive steps on microtubules and the step size of kinesins is
about 8nm.37 This indicates that a system size below 1,000 is enough to realistically
describe the movements of molecular motors. Even for a large system, a size N ≤
10, 000 is normally adequate for simulation. Thus, a conclusion obtained based on
the assumption of an infinite size may not be applicable to any real system.

Comparing Fig. 2(a) with Figs. 4(a) and (b), it can be seen that the slopes
of domain walls increase with the increase of ΩA and ΩD proportionally. This is
because when the difference between ΩA and ΩD enlarges, more particles will attach
to these two lanes rather than detach from them.

Increasing the value of Ω means more particles have chances to change to the
other lane if they cannot move forward along the current lane. Upon further in-
creasing Ω, it is found that the density decreases, and the locations of shocks shift
right slightly (see Figs. 2(a) and 3(a)).

When x > xden
max (xden

max denotes the position where the density reaches maxi-
mum), the differences between density profiles are not obvious (see Figs. 2 and 4).
This suggests that lane-changing rate Ω does not have any obvious effect on the
system properties (e.g., average density and current profiles) after the maximum
density is reached.

We next investigate the effect of the values of K on average density and current
profiles. We consider the situation in which ΩA is fixed but ΩD varies. Note that
the increase of K means the decrease of ΩD. It can be seen that average density
increases with the increase of the value of K (see Fig. 6(a)). Moreover, the shock
moves left and the amplitude increases. In other words, the width of the transition
region decreases. This can be explained as follows: when the value of K increases,
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Fig. 5. (Color online) (a) Average density ρ(x) for small values of Ω in a large system. (b) is a
locally enlarged figure of (a). Ω = 0 is the thick solid line in the middle, while Ω = 0.3 is the
red/light line slightly above it; Ω = 0.4 is the solid line slightly below it. x = i/N . The system
parameters are: N = 10, 000, ΩA = 0.3, ΩD = 0.1, α = 0.2 and β = 0.6.

Fig. 6. (Color online) (a) Average density ρ(x) for different values of K. (b) Current J(x) for
different of K. In each figure, K = 1 is the shortest line; K = 3 is the line in the middle; K = 5
is the longest line. x = i/N . The system parameters are: N = 1000, ΩA = 0.3, ΩD = 0.1, α = 0.2
and β = 0.6.

the value of ΩD decreases proportionally, so that the opportunities for particles to
detach from the bulk become smaller. In this case, more particles will remain in the
bulk. This leads to an increase of average density.

In Fig. 6(b), the current first increases with the increase of the value of K till it
reaches the maximum value, and then the current decreases with the increase of the
value of K. In other words, the position with the maximum current moves left and
the amplitude increases (see Fig. 6(b)) upon increasing K. The current curves can
be obtained from equation Ji ≈ ρi(1 - ρi+1), it thus can be seen that the maximum
current Jmax ≈ 0.25 when densities of two adjacent sites are equal to 0.5. When
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density is higher or lower than 0.5, the corresponding current is lower than 0.25.

Fig. 7. (a) Average density ρ(x); (b) Current J(x) for different values of the system size N . In
each figure, N = 100 is the shortest line in red; N = 1000 is the line in the middle; N = 5000 is
the longest line. x = i/N . The system parameters are: Ω = 0.2, ΩA = 0.6, ΩD = 0.2, α = 0.2 and
β = 0.6.

Fig. 7 shows the density and current profiles for different system sizes. It is found
that the width of the transition region decreases as the number of sites is increased
(see Fig. 7(a)). Our simulation suggests the boundary layer shows a finite-size effect
and will disappear in the limit of an infinite system. The finite-size effect shown in
Fig. 7(a) is consistent with that in Refs.20,29 In Fig. 7(b) one observes the amplitude
in the left boundary enhances when the system size increases.

4. Mean-field Approximation

In this section, a mean-field theory is developed. The occupation variable (τ`,i)
defined in section II is also used. The corresponding equation for the evolution of
particle densities 〈τ`,i〉 in a bulk (i.e., 1 < i < N) can be written as

d〈τ1,i〉
dt

= 〈τ1,i−1(1− τ1,i)〉 − 〈τ1,i(1− τ1,i+1)〉
+ ω〈τ2,iτ2,i+1(1− τ1,i)〉 − ω〈τ1,iτ1,i+1(1− τ2,i)〉
+ωA〈1− τ1,i〉 − ωD〈τ1,i〉, (1)

d〈τ2,i〉
dt

= 〈τ2,i−1(1− τ2,i)〉 − 〈τ2,i(1− τ2,i+1)〉
+ ω〈τ1,iτ1,i+1(1− τ2,i)〉 − ω〈τ2,iτ2,i+1(1− τ1,i)〉
+ωA〈1− τ2,i〉 − ωD〈τ2,i〉, (2)
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where 〈· · · 〉 denotes a statistical average. The term ω〈τ1,iτ1,i+1(1 − τ2,i)〉 is the
average current from site i in lane 1 to site i in lane 2, while ω〈τ2,iτ2,i+1(1− τ1,i)〉
is the average current from site i in lane 2 to site i in lane 1. The first two terms in
Eqs. (1) and (2) correspond to particle movement; the middle two terms correspond
to particle lane changing, and the last two terms correspond to attachment and
detachment of particles. At the boundaries, the densities evolve as

d〈τ`,1〉
dt

= α〈1− τ`,1〉 − 〈τ`,1(1− τ`,2)〉, (3)

d〈τ`,N 〉
dt

= 〈τ`,N−1(1− τ`,N )〉 − β〈τ`,N 〉, (4)

where ` can be 1 or 2. It can be seen that Eqs. (1) and (2) are equivalent when we
use the same lane-changing rate between two lanes. Therefore, we only focus on the
mean-field approximation in lane 2 (i.e., Eq. (2)). When N is large, i.e., N À 1,
we can transfer the coarse-grained stationary-state Eq. (2) to continuum mean-
field approximation. First, we factorize correlation functions by replacing 〈τ`,i〉 and
〈τ`,i+1〉 with ρ`,i and ρ`,i+1, then we set

ρ`,i±1 = ρ(x)± 1
N

∂ρ

∂x
+

1
2N2

∂2ρ

∂x2
+ O(

1
N3

). (5)

Substituting (5) into Eq. (2), we obtain

∂ρ2

∂t′
= (2ρ2 − 1)

∂ρ2

∂x
+ ΩA(1− ρ2)− ΩDρ2

−Ω(1− ρ1)ρ2
2 + Ωρ2

1(1− ρ2), (6)

where t′ = t/N , Ω = ωN , ΩA = ωAN and ΩD = ωDN . The term 〈τ1,iτ1,i+1(1−τ2,i)〉
is replaced by ρ1,iρ1,i+1(1− ρ2,i), and ρ1,i+1 is approximated as ρ1,i; similarly, the
term 〈τ2,iτ2,i+1(1−τ1,i)〉 is replaced by ρ2,iρ2,i+1(1−ρ1,i), and ρ2,i+1 is approximated
as ρ2,i. The boundary conditions become ρ`(x = 0) = α and ρ`(x = 1) = (1−β). As
lane-changing is symmetric and two lanes are homogeneous, we have ρ2 = ρ1 = ρ

(our Monte Carlo simulations show that densities in lanes 1 and 2 are the same).
Thus, Eq. (6) reduces to

∂ρ

∂t′
= (2ρ− 1)

∂ρ

∂x
+ ΩA(1− ρ)− ΩDρ. (7)

In the limit of t → ∞, the system reaches a stationary state with ∂ρ
∂t′ = 0, Eq.

(7) simplifies into

(2ρ− 1)
∂ρ

∂x
+ ΩA(1− ρ)− ΩDρ = 0. (8)

Eq. (8) is a first order differential equation and has been solved in Ref.35 The
low-density profiles in the bulk can be obtained by integrating the equation from
the left boundary (ρ(0) = α) to a density ρl:

x =
1

ΩD(K + 1)
[2(ρl − α) +

K − 1
K + 1

ln |K − (K + 1)ρl

K − (K + 1)α
|]. (9)
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Similarly, we can also integrate the equation from the right boundary (ρ(1) = 1−β)
to a density ρr:

1− x =
1

ΩD(K + 1)
[2(1− β − ρr) +

K − 1
K + 1

ln |K − (K + 1)(1− β)
K − (K + 1)ρr

|], (10)

where K = ΩA/ΩD. The overall density profile across the system can be described
by determining a shock position in these two profiles. In Fig. 8, we compare the
results of mean-field approximation (MFA) with the results of Monte Carlo simula-
tions (MCS). We find that the results of Monte Carlo simulations are in agreement
with that of mean-field approximation. We note that numerical results of MCS in
Figs. 8(a) and (b) are almost the same as Figs. 2 and 5 in Ref.,35 which also suggests
that lane-changing rate Ω has no effect on density profiles of a two-lane TASEP cou-
pled with Langmuir kinetics at a large attachment/detachment rate and/or a large
system size.

Fig. 8. (Color Online) Density profiles from Monte Carlo simulations (solid line) and mean-
field approximation (red dashed line). (a) α = 0.2, β = 0.1, k = 1, ΩD = 0.1 and Ω = 0.2; (b)
α = 0.2, β = 0.6, k = 3, ΩD = 0.1 and Ω = 2; (c) α = 0.2, β = 0.6, k = 3, ΩD = 0.2 and Ω = 100.
The system size N = 1, 000.

5. Conclusion

In this paper, two-lane totally asymmetric exclusion processes coupled with Lang-
muir kinetics on both lanes are studied using Monte Carlo simulations (MCS) and
mean-field approximation (MFA). The results of Monte Carlo simulations agree
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with the results of mean-field approximation. The model is directly inspired by
the experimentally observed movement of molecular motors which include motor
advancing along filaments, random attachment and detachment, and free jumping
between filaments.

The system has mainly demonstrated the following complex behavior on two
lanes.

• The jumping effect is observed, that is, the domain wall first moves left
slightly, and then move towards the right with the increase of the lane-
changing rate. This effect is a finite-size effect as it is not observed when
the system is large, e.g., N = 100, 000. On the other hand, increasing at-
tachment and detachment rates proportionally will lead to the jumping
effect becoming weaker (see Figs. 2 and 4).

• After densities reach maximum, the increase of the lane-changing rate has
little effect on density profiles (see Figs. 2-5).

• When ΩA (attachment rate) is fixed, it is found that average density in-
creases upon decreasing the value of ΩD (detachment rate) (see Fig. 6).

• When system size N is increased, the amplitude of the shock increases and
average density increases (see Fig. 8).

• Lane-changing rate Ω has almost no effect on density profiles in a two-lane
TASEP coupled with Langmuir kinetics at a large attachment/detachment
rate and/or a large system size.
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8. G.M. Schütz, in Phase Transitions and Critical Phenomena, Vol. 19, edited by C.

Domb and J.L. Lebowitz (Academic Press, San Diego, 2001).
9. B. Widom, J.L. Viovy and A.D. Defontaines, J. Physique I 1, 1759 (1991).
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