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Abstract  
 

A new variant of cellular automata (CA) models is proposed, based on Minimum 

Acceptable Space (MAP) rules, to study unsignalised traffic flow at two-way stop-controlled 

(TWSC) intersections and roundabouts in urban and interurban networks. 

 

Categorisation of different driver behaviour is possible, based on different space 

requirements (MAPs), which allow a variety of conditions to be considered. Driver 

behaviour may be randomly categorised as rational, (when optimum conditions of entry are 

realised), conservative, urgent and radical, with specified probabilities at each time step.  

 

The model can successfully simulate both heterogeneous and inconsistent driver 

behaviour and interactions at the different road features. The impact of driver behaviour on 

the overall performance of intersections and roundabouts can be quantified and conditions 

for gridlock determined.  

 

Theorems on roundabout size and throughput are given. The relationship between 

these measures is clearly non-monotonic.  

 

Whereas previous models consider these road features in terms of T-intersections, 

our approach is new in that each is a unified system. Hence, the relationship between arrival 

rates on entrance roads can be studied and critical arrival rates can be identified under varied 

traffic and geometric conditions. The potential for extending the model to entire urban and 

interurban networks is discussed.  
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Chapter 1

Introduction and Scope

1.1 Introduction

Mathematical modelling of traffic flow has a long history. The heterogeneous

nature of human behaviour, the random interactions between drivers, the complicated

geometric features of the roads, the highly non-linear group dynamics and the large

dimensions of the system under investigation combine together to create considerable

complexity. To date, modelling has not reached a satisfactory level, but we hope to offer

further analysis and suggestions for future improvements.

Modelling traffic flow at unsignalised intersections and roundabouts has focused

on two different approaches in recent years. Essar et al. (1997) Chopard et al.(1998)

Wang and Ruskin (2001 and 2002), and Ruskin and Wang (2002 a and b) simulate

unsignalised intersections and roundabouts using cellular automata (CA) models. Brilon

and Wu (1999), Bonneson and Fitts (1999), Harwood et al. (1999), Tian et al. (1999),

Troubeck and Kako (1999), Wu (1999), Chodur (2000), Hargring (2000), Tracz and

Gondek (2000), Tian et al. (2000), Tanyel and Yayla (2003) have concentrated on gap-

acceptance models.

A common deficiency of all models until fairly recently is the assumption that

drivers are consistent and homogenous. In reality, driver behaviour is heterogeneous and

inconsistent. Therefore, it is necessary to develop new models to overcome previous

drawbacks and this has a principle focus in much of the work described.

In order to simulate heterogeneous and inconsistent driver behaviour and

interactions at the different road features, new CA models are developed based on the

Minimum Acceptable sPace (MAP) method. Basically, the MAP method enables us to

categorise the driver behaviour into four groups (rational, conservative, urgent and radical).
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In each group, driver behaviour has its own special space criteria. If the criteria are met, the

vehicle can then move onto intersections or roundabouts. Each driver is randomly assigned

to one of four categories in each time step according to a distribution of driver behaviour. In

this way, we can successfully introduce both heterogeneity and inconsistency for the drivers

and their interactions at the different road features.

Previous models (e.g., gap-acceptance models referenced earlier) considered road

features (e.g., roundabouts) in terms of T-intersections. Thus, the models could only be used

to investigate individual entrance operational properties. Our approach is new in that each

intersection or roundabout is a unified system. Hence, the relationship between arrival rates

on entrance roads can be studied and critical arrival rates can be identified under varied

traffic and geometric conditions.

Furthermore, our models can be applied to situations for which headway

distributions are insufficient to describe traffic flow (Ruskin and Wang 2002a), and

where the gap-acceptance model is not readily applicable, such as traffic flow in an

urban area. Additionally, our models do not have any restriction on speed either, i.e., they

can be applied to either high or low speed vehicles, and are thus applicable to both urban

and interurban networks.

1.2 Scope of this Thesis

This thesis is organised as follows:

Chapter 2: Approaches to Traffic Modelling. In this chapter, we

comprehensively review microscopic and macroscopic traffic flow models including car-

following theory, CA models etc.

Chapter 3: Modelling Traffic Flow at Single-lane Two-way Stop-controlled

(TWSC) Intersections. In this chapter, we propose a new model to study single-lane

TWSC intersections. The Minimum Acceptable sPace method (MAP) is proposed for

the first time. Four driver behaviour groups are defined. The processes of vehicle arrivals

on entrance roads and the intersection interactions are modelled. We also introduce a
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Stop Sign Delay Time (SSDT) to simulate the delay due to the pause at stop signs of

TWSC intersections. The operational properties (such as throughput, entry capacity, etc)

of single-lane TWSC intersections are also investigated. (Throughput is defined as the

total number of vehicles, which navigate the intersection or roundabout in a given time

and capacity as the number of vehicles that can enter an intersection or roundabout from

an individual entry road).

Chapter 4: Modelling Traffic Flow at Multilane TWSC Intersections. Two-lane

TWSC models are proposed with different lane-allocation patterns. The processes of

vehicle lane allocation are simulated. The operational properties of different lane-

allocation patterns are investigated and compared. In order to contrast intersections with

and without traffic lights, intersections with traffic lights are also considered briefly.

Chapter 5: Modelling Traffic Flow at Single-lane Roundabouts. Single-lane

roundabouts, as an alternative to single-lane TWSC intersections, have been

investigated. In this context, a new CA ring model is developed, which can be applied to

any roundabout topology, (such as different numbers of entrance roads). Theorems on

roundabout size and throughput are given. The operational properties of single-lane

roundabouts are also investigated.

Chapter 6: Modelling Traffic Flow at Multilane Roundabouts. A two-lane

roundabout model is developed based on our MAP method. Position Delay Time (PDT)

is introduced to simulate the delay due to a vehicle’s relative position on the entry road

(lane choice). The operational properties are also discussed and extension to three-lane

roundabout model is also considered.

Chapter 7: Summary. In this chapter, we present a summary of the main findings

and conclusions, followed by a comprehensive review on the contributions of the

research and some suggestions for future developments derived from the work to date. In

this context, the key question of modelling heterogeneous driver vehicle units is

addressed and can readily be incorporated in the models described.
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Chapter 2

Approaches to Traffic Flow Modelling

2.1 Review of Microscopic Modelling

Basically there are three types of approaches in modelling the traffic flow,

microscopic, mecroscopic (between micro- and macro-) and macroscopic modelling.

Microscopic modelling generally starts with and focuses on individual car movement.

Most microscopic models are known as “Headway models” because the individual car

movement relates to the headway between the two cars (Hammad 1998). Others may be

called “Interacting models”, since for intersections or roundabouts, for example,

individual car movements may be inter-dependent.

2.1.1 Car–following models

The classical car-following models were developed to model the motions of

vehicles following each other on the single lane without any overtaking (Pipes 1953).

Despite fifty years of history, however, the very many relationships involved are

frequently deficient in description and often not completely understood (as discussed

below). The car-following process remains an important one, however, which is

considered in all microscopic simulation models as well as in modern traffic flow theory

(Brackstone and McDonald 1999).

2.1.1.1 Car-following theory

The first and most basic microscopic models was that based on follow-the-leader

theory (Herman et al. 1959, Gazis et al. 1961), (also called “car-following” theory). In

this theory, individual motion is essentially a reaction to the behaviour of the vehicle (the

leading vehicle) in front and car motion is also restrained by other conditions such as

engine power, delay times and traffic rules. The model gives a stimulus-response
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function of the headway distance between the leading vehicle and the following vehicle,

the speed of the following vehicle and their relative speed.  The model can be written as

a ( t + T) = α ⋅v(t)m⋅∆v(t)/ gap(t)l         (2.1)

where: a = dv / dt is the acceleration , ∆v is the speed difference to the vehicle ahead,

v(t) is the relative speed, gap(t) is the gap between the leading vehicle and following

vehicle, and the α, m and l are empirical constants.

In order to determined the combination of constant α, m and l, many similar

experiments have been conducted over the past 40 years (Gazis et al. 1961, May and

Keller 1967, Heys and Ashworth 1972, Hoefs 1972, Treiterer and Myers 1974, Ceder

and May 1976, Aron 1988, Ozaki 1993). Unfortunately values observed spread over a

wide range and appear to reflect in part specific conditions of set-up .

In particular, true car-following behaviour has several other important features,

which have not been explored by car following theory (Chakroborty and Kikuchi 2000).

These include:

• Car following behaviour is “human behaviour”, a process characterised by

“vagueness” rather than determinism.

• Response to stimuli in car following is asymmetric.

This contrasts the theory, which requires acceleration and deceleration to be

symmetric. Leutzbach (1988) suggests that this is because “drivers pay closer attention

to decrease in spacing (decrements) than to increase in spacing (increments) simply on

the basis of their own safety.”

The theory also assumes that the desired speed depends on the gap between

vehicles. Accordingly only one platoon (or set of cars with no intermediate spaces) will

exist if the time of consideration is long enough. This assumption is only correct when

the speeds of the cars are less than the desired speeds of the drivers. The desired driving

speeds vary greatly between the drivers, and depend not only on gaps between the
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vehicle in front, but also on personal preferences, motivations for the journey, weather,

car performance and road conditions, etc. In real road situations, the existence of several

platoons is normal. On a single-lane motorway, for example, there are always several

leader cars that have the lowest preferred speed in this platoon.

2.1.1.2 Safety distance models

A further type of car following model is the safety distance model, where the

purpose initially was to specify a safe following distance to avoid collision. The first

such model was suggested by Kometani and Sasaki (1959), and given as:

∆x (t-T)= α v2
n-1(t-T) + βl v2

n(t) +β vn(t) +b0                                                                   
 (2.2)

where T, α, βl, β and b0 are empirical constants, ∆x is the distance between the leading

and following vehicles, t is time, and vn-1 and vn are speeds of the following and leading

vehicles respectively.

The authors described two experiments. The first allowed average speeds <

45km/h and the second allowed average speeds between 40km/h and 60 km/h, and two

set of constant values were observed.

The approach was subsequently developed by considering human factors by

Gipps (1981). His model included a basic assumption of common sense, which is that

the drivers will use the maximum braking rates only when they think that they should

and/or estimate that the other drivers will do so. This requires inclusion of further

constants in the formula, namely bn, which is the largest braking rate that the driver of

the nth vehicle wishes to use and b* the predicted braking rate that the (n-1)th car in front

will use, namely bn-1= b*. The deceleration (braking process) uses the formula

vn ( T +t ) ≤  bn T  +( bn T- bn {2[ x n-1(t)-s n-1-x n (t)]-v n(t)T –v n-1 2(t)/ b* ]} ½             (2.3)

and the process of acceleration is given by
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vn(T+t )≤ vn(t)+ 2.5 an T [1-vn(t)/Vn]⋅ (0.0025 + vn (t)/ vn)1/2     
                    (2.4)

                      

where vn ( T +t ) is the maximum speed for the nth  vehicle with respect to vehicle n-1;T

is the constant time interval; sn Vn and an are the effective size (the physical length plus

some margin); the desired speed and the maximum acceleration for the nth car.

This approach has been widely used in simulation models such as INTRAS and

CARSIM in USA (Benekohal and Treiterer 1989), PROMETHEUS in France (Broqua et

al. 1991), DoTs SISTM model in UK (McDonald et al. 1994) and more recently by

Kumamoto et al. (1995) in Japan.

2.1.1.3 Psychophysical spacing models

Michaels (1963) was the first author to discuss the underlying psychological

factors, which would eventually dictate driver behaviour. The underlying concept of his

model is that drivers would know the gap size and be able to perceive changes in relative

speed due to changes in the apparent size of the vehicle in front. This perception of

relative speed through changes in the visual angle subtended by the leading vehicle

would induce the drive to make the decision to decelerate or accelerate.

The threshold for perception of speed changes was given by Michaels, who

stated that only when the threshold is exceeded, will drivers choose to take action. The

need for action depends on driver perception, so that inability to perceive any changes in

relative speed implies that these are no longer above the threshold. The gap threshold is

more important for small headway distance where speed differences are normally below

the threshold. The threshold for this “just noticeable” distance is given by 10% - 12 %

changes in visual angle.

A series of experiments were conducted by Evans and Rothery (1973) to define

the thresholds suggested by Michaels. The experiments were set up by asking the

passengers in a test vehicle to judge the gap between the vehicle in front and the test

vehicles that they are in with a set time given to make assessment. The experimental

conclusions were that the chance of a correct judgement is a function of v/∆x and the
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observation time.  The results also indicated that the thresholds are subject to a negative

response bias which increase the ∆x. In other words, the passengers believe they are

close to the vehicle in front when this is not really true (Eveans and Rothery 1977).

Wiedemann (1974) was the first to combine all these thresholds together. This

model integrates the three main thresholds, i.e. relative speed and distance perceptions as

follows:

• A relative speed threshold for perception of closing, ~ -3.1�10-4∆X, ∆X is

relative distance.

• For small relative speeds the perception thresholds for closing and opining

are –5.2�10-4∆X and 6.9�10-4∆X respectively.

• Thresholds for perceiving increases and decreases are 2.5+2.5v1/2 and

2.5+3.8v 1/2 respectively, v is the relative speed.

More recently experiments were conducted by Reiter (1994), who used an

instrumented vehicle to measure the action points and amended the second threshold

above to 0.05+41.5�10-4∆X and -0.15 +8.5� 10-4∆X respectively.

The arguments regarding this model are intensive and many, in recent years,

stem from psychologists. Hancock (2000) argued against the fundamental basis of the

model, which is a perceptual signal to trigger avoidance behaviour. Basically, his

argument comes from scepticism of whether psychological response is a deviation from

reality. He also doubts the way in which the thresholds are calibrated, which is normally

done in static, non-reactive, laboratory conditions.

There are probably at least two important factors that have not been included in

this model. Firstly, cognisance that the thresholds are different for different individual

drivers. Secondly, the possible bias which may be caused by environmental or other

factors. Brackstone and McDonald (1999) indicated that not enough specific research

work has been done on these concepts in order to compile a coherent model of driver

behaviour. In consequence, they claim that model validation is hard to accept or to

reject.
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Nevertheless Wiedemann’s ideas have recently been incorporated in

PARAMICS-CM model in the UK by Cameron (1995).

2.1.1.4 Fuzzy logic-based models

The latest distinct development in car-following models is to use fuzzy logic.

The original use of this method was published, Kikuchi and Chakroborty (1992) and

subsequent developments in 1999 and 2002 (Chakroborty and Kikuchi).

Basically this approach tries to incorporate “fuzzy” rules to reflect the stimuli

conditions of classical car following theory, namely relative speed, distance headway

and acceleration / deceleration of the leading vehicle.  A set of fuzzy inference rules has

the following form:

If (at time t)

• Distance Headway (DS) is  Ai                        AND

• Relative Speed (RS) is Bj                         AND

• Acceleration of Leading Vehicle (ALV) is Ck

Then (at time t +1)

Acceleration / Deceleration of following vehicle should be Dl.             

The above rule consists of three fuzzy propositions consisting of fuzzy sets Ai, Bj

and Ck. They refer to certain linguistically described conditions in a fuzzy set of

concepts ADEQUATE, LARGE POSITIVE, NONE, VERY MILD, etc. Consequently

in “Then”, Dl is also a fuzzy set for concept NONE, MILD etc. The fuzzy sets Ai Bj Ck

and Dl are represented by using the triangular or trapezoidal shape membership functions

(Kikuchi and Chakroborty 1992). Since RS, DS and ALV are grouped into six, six and

eleven linguistic classes respectively, the entire rule base has 396 (6 x 6 x 11) rules.

Researchers who support fuzzy models believe that they help to combine the

psychological and physical perspective (Brackstone and McDonald 1999), but this

viewpoint is not universally shared (Hancock 2000). Anyway this method has been used
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to formulate the MIcroscopic model for analysis of TRAffic jaM (MITRAM) modelled

by Henn (1995) and investigated through road tests by Brackstone et al. (1997).

All car-following models have a common weak point, which is that they try to

describe a pair of vehicles only. In reality, a driver’s action comes not only from

observing the leading vehicle, but also watching out for at least several cars in front. A

real world driver will use a braking rate based on the premonitory comprehensive

information of several cars in front, rather than on information on only one vehicle in

front. A corollary to this is that a driver would be more cautious and allow more space if

driving behind a huge vehicle (i.e. typically unable to get any information about other

vehicles in front).

Very recent work on car-following theory, Boer (2000), has specifically noted

three issues that contribute to behavioural variance of drivers.

• Car following is only one of many tasks that drivers perform simultaneously

• Drivers are satisfied with a range of conditions that extend beyond the

boundaries imposed by perceptual and control limitation (i.e. tolerance is

board)

• In each driving task, drivers use a set of highly informative perceptual

variables to guide decision-making and control

Thus, car-following theory has been intensively studied in the past half century,

where current focus is on attempts to understand the interaction between phenomena at

the individual driver level and global behaviour on a more macroscopic scale (Krauss

1997, Brackstone and McDonald 1999).

One reason for this refocus is that car-following models is that may also be

helpful for developing cruise control for automated highway system (AHS) and other

automatic traffic control systems. (Chakroborty and Kikuchi 1999).
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2.1.2 Queueing theory

Queueing theory can be catalogued in terms of microscopic models although the

target of the theory is not individual car movement but the waiting line. Queueing theory

involves use of mathematical models to study properties such as delay time or length of

the queue. The first use of queueing theory for unsignalised intersection modelling is due

to Tanner (1962). Queueing theory has since been intensively used to study traffic

behaviour at intersections with and without traffic lights by Heidemann (1991, 1994 and

1997).

A queue occurs when instantaneous demand exceeds instantaneous capacity of

the road. The queue length depends on the inter-arrival times and service processes. The

service processes here mean all stages of the vehicle arriving at the end of the queue and

crossing the intersections, (hence leaving the queue). Queueing models are characterised

by the distribution of inter-arrival times and the distribution of the service times. Two

distributions are normally used, Poisson or general distribution.

Using a standard notation for classifying queueing systems proposed by D. G.

Kendal, M/G/1 for example, the first symbol is the distribution of inter-arrival times, the

second is the distribution of the service times and the last one indicates the number of

servers in the system. It is equal to number of lanes of a road. A single lane is therefore

equivalent to one server. M refers to Poisson distribution and G means a general

distribution (Vandaele 2000). The speed-flow-density relations will closely be different

depending on the queueing model and distributions.

More recent work, based on queueing theory, is the studying of these relations

through speed-flow-density (SFD) diagrams of motorway traffic flow (Vandaele 2000).

The basic traffic flow-density-speed equation is written

q = Es    (2.5)

where q and E mean traffic flow and density and s is speed. And effective speed
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S = Vn (D max -D)/D max (2.6)

where Vn is the normal speed, Dmax is maximum density, and D is the density. Vandaele

(2000) obtained

q max =Vn ⋅ D max /4 (2.7)

for M/M/1 model . Similarly for M/G/1 model

q max =2Vn⋅D max { [(β2+1)1/2  -21/2 ]/( β-1)}2  ,   β ≥ 0                            (2.8)

where traffic flow q is a function of the variation parameter β and β is the coefficient of

service time variation. The formula for G/G/1 model is similarly derived. Several

applications of these expressions have been attempted e.g. in highway E19 from St-Job

to Merksem (Antwerp) in Belgium (Vandaele 2000).

As the shape of the SFD is determined by the model parameters, the real world

situation can be simulated by adjusting these suitably (Vandael 2000).

2.1.3 Cellular automata (CA)

Modern science is challenged by the need to understand complexity and its

origins in problems such as traffic flow. When scientists analyse such systems, one

traditional way is to break them down into simple constituent parts (Wolfram 1986). In

traffic flow models, each part of the problem such as car size, car speed, driver’s age and

personality can, in theory, be analysed separately. While some interesting results on

individual aspects of the problem, may be obtained, the overall way in which those parts

act and react together may still not be known, since traditional models can not cope with

many degree of freedom.

Cellular automata simulation methods have thus become increasingly popular in

modelling complex behaviour, such as traffic flow, since exact mathematical formulae is

not available for these problems.
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Cellular automata are dynamical systems—defined by Toffoli and Margolus

(1987), with space, time and system states are discrete. A cellular automaton of traffic

flow can be divided into uniform sites on a finite uniform lattice defining the road that

vehicles drive on. The variables describing each phase of each site are updated for each

time step. The variables may be the speeds of the vehicles, indications of whether the

cells of the lattice are occupied or empty or any other parameters, which describe an

aspect of traffic flow. The state of a cellular automaton depends on the value of discrete

variable(s) at each site.  Each site may have a finite number of discrete variables, but

only one value of one variable in any single discrete time step.

2.1.3.1 One-dimensional deterministic cellular automata (1DDCA)

The simplest models are one-dimensional deterministic cellular automata

(1DDCA). The basic idea of 1DDCA is to equally divide a road into adjacent cells along

which the vehicles will move. The cells can be either vacant or occupied. One vehicle

only can occupy one cell at a given time. Simple update rules may be defined, e.g.

(Yukawa et al. 1994 and Chopard et al. 1995 and 1998) to model 1-D traffic flow.

The update rules are as the following:

• Query whether the cell in front is vacant,

• If yes, the vehicle can move forward one cell in this time step. Otherwise the

vehicle does not move in this time step.

The maximum speed of a vehicle is 1, as it can advance only one cell in a single

time step and cars only have two possible speeds, 0 and 1. As the update rule is similar

to the rule-184 elemental CA (according to the Wolfram’s (1986) labelling scheme), this

kind of CA model is also called CA-184.
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2.1.3.2 The asymmetric stochastic exclusion process

Given the issue of asymmetry, method with regard to Car-following theory

(Section 2.1.1.1), it is worth noting 1DDCA the variation, which allows for asymmetric

stochastic exclusion update rules are:

• Randomly pick a cell ,

• If the cell in front of the picked-up cell is vacant, the vehicle moves one cell.

This approach has been extensively used by Derrida et al. (1992 and 1993) and

developed further by Nagatani (1993). The latter proposed that the speed should depend

on the gap between the leading and following vehicle. The one-dimensional asymmetric

exclusion model has been used to simulate highway traffic jams and also been extended

for a two-dimensional traffic flow model (Nagatani 1994a).

2.1.3.3 Stochastic Traffic CA (STCA)

A further CA model, the Nagel-Schreckenberg Model (NSM) (Nagel and

Schreckenberg 1992) has the principal feature that the speeds of vehicles have numerical

expressions, based on the following two assumptions:

• Each time step is 1second, which links the time step of the model to real

time.

• The length of each cell is 7.5 m, which represents the real road in terms of

the number of unit cells.

According to Nagel’s (1996) paper, the model can be described for cars can with

integer velocity between 0 and vmax, where vmax ≤. 5. Based on the above two

assumptions, one unit of velocity = 7.5m/sec, (which = 27km/h).  Thus vmax is 135km/h.

For each vehicle, the following steps are carried out in parallel:

Find number of empty sites ahead (= gap) at time t,

• If v > gap (too fast), then slow down v = gap. (NSM-rule-I),

• Else if v < gap (enough head way) and v < vmax, then accelerate by

one.v=v+1. (NSM- rule-II],



15

• Randomisation: if after the above steps, v >0 and v ≤ vmax, with probability p,

reduce v by one [NSM-rule-III], and allow each vehicle to move sites ahead.

The gap is the number of empty sites, the headway is equal to v/gap.

Nagel (1996) indicated that the randomisation (NSM rule-III) condenses three

different properties of human driving into one computational operation. The three

different properties are “fluctuation” at maximum speed, over reaction at breaking, and

retard (noisy acceleration).

Some improvements have been added by Ricker et al. (1996), Esser and

Schreckenberg (1997) and Wagner et al. (1997). Ricker et al. indicated that the

maximum speeds differ between cars and used vd(i) instead of vmax to allow for different

desired velocities in a fleet of cars i = 1, 2, … Richer modified NSM-rule-II and NSM-

rule-III by using vd(i) instead of vmax . We refer to these as NSM-rule-IIa and NSM-rule-

IIIa respectively. This has also been used in two-lane traffic simulation. Different

vehicle types are also considered by allowing a long vehicle to occupy more than one

cell for urban traffic simulation (Esser and Schreckenberg 1997).

Wagner et al. (1997) further modified the NSM by suggesting a breaking

probability Pbreak instead of NSM-rule-III, (refer here as NMS-rule-IIIb). He considered

• v n+1=  Max (0, v-1)  with probability Pbreak

• v n+1=  v                    with probability of 1-Pbreak

This STCA model has described qualitatively some known facts about traffic

flow, e.g. the spontaneous occurrence of congestion, the relation between traffic flow

and traffic density and the back travelling stop-and-go wave, (which propagates in the

opposite direction to traffic flow (Wagner et al. 1997).

There are, however, several points on the assumptions and rules that benefit from

reconsideration.
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Firstly, rule 1 (v = gap) means that the headway of the following car is only 1

second, because headway is equal to v/gap.  This assumption means the following car

does not observe the 2-second rule, where safe headway is observed to be 2 seconds on

average. It means that a further gap = 2v would be more suitable.

Secondly, NSM-rule-III and NSM-rule-IIIa are questionable to some extent. To

model a realistic system random speeds are necessary in highway traffic. However,

random decrease of 1 unit in speed of a given car may be inappropriate because 1 unit in

speed means 27km/h. It is not realistic to decrease speed by 27km/h in one second

without leading to collision. A driver will normally decrease speed on a freeway only

when the gap between him and car in front is smaller than the safe gap. And decrease

will usually be gradual rather than dramatic for safe driving.

This model has also been used in urban networks (Esser and Schreckenberg

1997, Emmerich 1998). This aspect is considered further in Section 2.4 (Review on the

urban networks). In summary, the STCA is a multi-speed model, but may be less

necessary in modelling in urban context (Chopard et al. 1998).

2.2 Review of Macro- and Mecro- scopic Models

Macroscopic models, based on fluid dynamic equations, were originally

proposed by Lighthill and Whitham (1955). Since then, dynamic macroscopic traffic

flow modelling has become a central focus for both theoretical and application-oriented

research. Second-order models were developed by Payne (1971) and others and

overcame some deficiencies of first-order models in terms of improving accuracy.

The approach of most of the macroscopic mathematical model structures

suggested so far are derived from microscopic considerations within a string of identical

vehicles. This approach has been criticised and questioned. Papageorgiou (1998) argued

against this approach. He indicated that in traffic modelling the number of individual

particles, which are vehicles here, does not exceed a few hundreds per km. By contrast,

when we proceed from microscopic to macroscopic equations in thermodynamics, this

number is 1023 particles per cm3.
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When the number of cars is large enough, traffic flowing on a highway can be

modelled in the term of a one-dimensional compressible gas (Nagatani 1995). Such a

hydrodynamic approach predicts the appearance of traffic situations, shock waves and

traffic jams. However the hydrodynamic approach does not naturally describe the

behaviour of traffic flow in the low-density limit where there are large heterogeneities in

the traffic density (Ben-Naim et al. 1994, Nagitani 1995).

Klar and Wegener (1999) proposed mecro-models, which have a frameworks

close to kinetic theory of gases and Boltzmann-like models. These models may be

classified as an intermediate step between microscopic and macroscopic models. They

can be derived from microscopic considerations, while simultaneously, fluid dynamic

models can be related to traffic kinetic.

Basically the method derives a Boltzman type evaluation equation for the

statistical distribution function on the position and velocity of a vehicle along the road.

However, the main controversy about this method is that gas is three-dimensional and

symmetric, whereas traffic flow is only one-dimensional.

Recently, a multiple Bolzmann equation approach has been further developed by

Hoogendoorn and Bovy (2000) and Helbing (2001), using the second-order movement

(v2) method originally due to Payne (1971). However, this method is being challenged

by Cho and Lo (2002). They argue that v2 does not have any physical sense in traffic

flow and the velocity variance equation that is obtained by multiplying the Boltzmann

equation by v2 is also a meaningless term in traffic flow. Cho and Lo (2002) suggest the

use of ||v-ue||2  (individual velocity variance) to modify the second order Boltzmann

equation.

2.3 Review on Multilane Traffic Flow Modelling

Single-lane models, e.g. car-following models, fluid-dynamical models

(Prigogine and Herman 1971), and single-lane CA models (Nagel 1996), can not

represent realistic traffic flow features for one main reason. The situation of a single lane
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freeway (single-lane on a freeway) only seldom applies, and if it does, is probably just

for a short part of a road. A passing lane is commonly available, so that other vehicles,

which have been delayed by the leader car, can pass. In the presence of a passing lane

the whole configuration of traffic flow changes to that of multilane flow.

The design of lane-changing rules is one of the main tasks for multilane traffic

modelling. A common approach to date for building a multilane model is to try to

modify single-lane models and upgrade with lane-changing rules.  However lane-

changing involves not only vehicle movement, but also the whole process of driver

decision making. The effectiveness of lane-changing rules determines how well the

model describes the real world.

2.3.1 Freeway multilane traffic flow

There are many differences between multilane traffic flow for freeways and

urban networks. The difference in motivation for changing lanes is just one of them. For

a freeway, the main motivation for lane change is reaching a desired speed, which may

be by acceleration or by deceleration. Speed is thus the major concern. On urban streets,

the motivation for lane-changing is not only to maintain the speed or to avoid being

obstructed by e.g. bus or delivery vehicles, but also to access the proper lane, which will

enable turning in the direction desired. In fact to access desired direction and to avoid

obstructions are the main motivations for lane-changing on city streets.

Most work on multilane models in the literature deals with freeway traffic

(Gipps 1986; Biham et al. 1992, Nagatani 1994b, Ricker et al. 1996; Wagner et al. 1997,

Klar and Wegener 1999) rather than with urban networks. Two-lane CA traffic

simulation models used to simulate freeway situations are due to Nagitani(1993), Ricker

et al.(1996) and Wagner et al. (1997).

The two-lane model of Ricker et al. (1976) was built from two parallel single-

lane models, which is based on the Stochastic Traffic CA (STCA) (detailed in Section

2.1.3.3). The three rules of Nagel-Schreckenberg Model (Nagel 1996) have been
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modified by Ricker et al. With four additional rules defining the exchange of vehicle

between the lanes, the model contains 7 rules in total, given below.

In the following rules, the index i is the number (or label) of the vehicle, x (i) is

the position, v(i) is its current velocity, vd (i) is the its maximum speed, pred(i) is the

number of the preceding vehicle, gap(i)= x (pred(i))-x(i) –1, the width of the gap to the

predecessor. Using gap(i) for the number of empty sites ahead in the same lane and

gapo(i) to nearest the empty site ahead on the other lane, and gapo,back (i) for backward

gap on the other lane. L, Lo and Lo,back(i)are the parameters which define the distances

immediately ahead,  ahead and behind on other lane respectively. A vehicle i changes to

the other lane if the last four conditions below are met. All vehicles update

simultaneously.

• if v(i) ≠vd (i), then v(i) =v(i) +1 (2.9)

• if v(i) >gap(i) ,then v(i) =gap(i) (2.10)

• if v(i) >0 and random number <pd (i) , then v(i) =v(i) –1 (2.11)

• gap(i)<L (2.12)

• gapo(i) >Lo (2.13)

• gapo,back(i)>Lo,back(i) (2.14)

• generated random number <p change.    (2.15)

This model has several defects, which are caused by the given nature of the

rules. One is that the model considers different desired velocity, but does not consider

that the driver who prefers a lower velocity is likely to stay in the slow lane rather than

in the fast lane. This defect leads to an over estimate of the number of vehicles changing

lanes.

Wagner et al. (1997) also simulated two-lane traffic by using a CA approach. His

model is based on NSM, but is modified by the introduction of NSM-rule-IIIb (Section

2.1.3.3). The aim of this model is to reproduce the “density inversion” observed two-lane

traffic. More restrictive rules are therefore used but velocity differences have not been

considered.
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2.3.2 Urban multilane traffic flow

In Hammad’s two-lane model (Hammad 1998), the urgent, minimal and

maximal conditions for lane-change are used to suit different situations requiring

movement with three probability parameters governing (lane-changing probability,

obstruction probability and lane obstruction probability) and four case rules. The model

attained some insight in the relation between lane-usage and density. Inparticully, the

model successfully simulates and has been validated for the macroscopic phenomenon

called “lane-usage inversion” or “density inversion”, which occurs long before

maximum flow. The model has been shown to be robust to adjustment of the three lane-

changing probability parameters.

Nevertheless, some unrealistic situations still exist, which can be further

explored. Firstly, an obstruction, such as that due to delivery and bus stops, is normally

in the left lane only, with some exception of breakdown. It is somewhat unrealistic,

therefore, to allow equal probability of obstruction probability in both lanes, unless the

street is one-way. We note this point, since our focus on urban features and driver

behaviour will draw upon a distribution of event/decision probabilities for various

modelling aspects.

Secondly, according to Hammad’s rules, the vehicles may move to the other lane

for turning, change back for speeding, and change lane again for turning, (also known as

“Ping-Pong” changes). This oscillation process may continue without as long as the

criteria are met. In reality, if a vehicle is turning at the next intersection on the urban

road, particularly already in the proper lane, the possibility of lane-changing for gaining

speed or avoiding a slow platoon is very low.

Thirdly, lane-change is intrinsically a stochastic process, so that even when all

conditions have been met, where some drivers still do not change lane. Consequently the

basis for driver decision as it related to the probability of changing lanes is not

considered in the Hammad model.



21

2.3.3 Issues in multilane traffic flow modelling

A very common unrealistic feature of two-lane models is oscillation. There are

two types of oscillation indicated by Ricker et al. (1996). The first one occurs if all

vehicles start in one lane with a higher density in consequence, so that every driver

decides to change lanes. Thus, all vehicles attempt to change to another lane. As a result,

they will all change back again. This collective lane-change effect has been observed by

Nagatani (1993 and 1994b). One way to overcome the problem is to change the

symmetric model into an asymmetric one by randomising the lane-changing decision by

using of a probability Pchange, (starting from random initial conditions), which has the

effect of diluting this oscillation effect.

Another type of oscillation occurs when the vehicle changes to and fro or

between lanes several times due to the following vehicle meeting the criterion of lane-

change. In Hammad’s model (1998) the following vehicle may change lane for speed

and change back for turning. Similarly, in the model of Ricker et al. (1996), the

following vehicle may change lane to increase speed, then may change back after the

leading vehicle increases its speed to provide sufficient following space. This effect is

caused by allowing random speeds, but  is likely to be limited importance for urban

networks, for reasons of speed-range and turning positioning (as noted previously).

Another common issue relates to the criterion of looking backward on nearest

other lanes. Both of Ricker et al. and Hammad’s models consider a look-backwards-rule

in terms of to guarantee the following car in the other lane would not be blocked in the

next time step. However, a block may occur for following cars in the other lane in the

subsequent time step. This can happen if the speed difference is very large i.e. if the

lane-changing vehicle’s speed is slow and the following vehicle is travelling at high

speed. The following vehicle has to stop or decrease the speed in the second time step to

avoid to closing on the lane-changing vehicle. In the real world, the driver normally

considers not only space but also speed difference and car accelerating capability before

changing lane.
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In a recent paper on multilane work, due to Klar and Wegener (1999), a

microscopic multilane model, based on reaction thresholds, is developed. There are

seven thresholds to be considered for a vehicle to change the lane and speed. Once the

distances of a vehicle between the leading or following vehicle become larger or smaller

than any threshold distance, the vehicle will change speed or change lane

instantaneously. The threshold depends on the speed and reaction time. The reaction

times are based on empirical experiments, e.g. Klar et al. (1996).

The thresholds of the vehicle in the given lane are:

• HL(v)=HO+ vTL            (2.16)

• HR(v)=HO+ vTR (2.17)

• HB(v)=HO+ vTB (2.18)

• HA(v)=HO+ δ + vTA (2.19)

• HF=HO+ δ + wTF (2.20)

and the thresholds on the left lane and right neighbouring lane are

• HL
S=HO+ vTL

S (2.21)

• HR
S=HO+ δ + vTR

S (2.22)

where HL , HR , HB , HA  , HF  , HL
S and HR

S are thresholds for lane-changing to left, to

right , breaking, accelerating and free driving on the given lane, and the thresholds on

the left lane and right lane respectively; TL , TR ,TB ,TA and TF are constants of the

reaction times , which are determined by experiment; HO is the minimal distance

between the vehicles. δ  is a constant related to acceleration delay.

These lane-changing rules are more sophisticated than those for other models,

since speed of the vehicle that will change lane is also being considered. One basic

assumption of the model is that the left lane is faster than right lane (in Germany). This

is true only when there is no congestion on any lane. No consideration has been given to

speed of cars in the neighbouring lanes.
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2.4 Review of Urban Networks

The above methods are for general traffic modelling. Our research in this thesis

will focus however on urban networks and more specifically on road features, which are

intrinsic to urban and inter-urban systems, which closely reflect daily experience and

which congestion is a daily hazard.

2.4.1 The context of urban networks

Traffic modelling on freeways as opposed to urban networks requires a different

context. Firstly, traffic flow dynamics are different, since the normal situations on urban

roads, such as stopping and turning, are not allowed on freeways. Stops belong to special

events that only happen when a crash or traffic jam occurs. However in urban networks,

crashes and jams are not the main reason for stopping. In an urban area, this is typically

due to car manoeuvring and queuing, traffic lights, driver behaviour and the operation of

business. Turns are inevitable in driving on urban streets. In contrast, turning on freeway

often follow the geometrical shape of the freeway and this tuning does not change the

components of traffic flow. In a freeway model, speeds may be considered up to 165km/

h, which clearly does not apply to urban areas.

Secondly, the geometrical configurations of freeway and urban networks are

different, with that of the freeway much simpler. There are entrances, exits and only one

road direction. For urban networks in contrast, there are junctions with or without traffic

lights, roundabouts with or without traffic lights, single, double and multi-lanes, single

and multi-directions on urban streets and so on.

Both in freeways or urban networks the group, or “collective behaviour”, is

normally targeted. However, because of the difference in dimension of the systems and

difference in the targeted traffic flow phenomena to be reproduced, different levels of

compromises must be applied (Esser and Schreckenberg 1997).

The urban network level of traffic modelling was originally based on the two

fluid theory of town traffic (Herman and Prigogine 1979, Herman and Ardekani 1984).
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The theory relates the average speed of moving cars to fraction of running cars in a street

network. Hydrodynamic models are hard to apply in urban networks because of the

many differently directed currents of traffic involved and intersections and traffic lights

(roundabout as well) are difficult to translate into hydrodynamic language (Lehmann

1996).

Car-following theory may only be used separately on each road of an urban

network, it does not help much for networks as whole, as the dynamic relies on traffic

lights intersections rather than the gap between vehicles.

2.4.2 Urban networks details

The aim of urban networks modelling is to explore congestion on urban roads.

Since the intersections are the “bottlenecks” of the whole network, the modelling of

urban networks has focused on the intersections. Various types of intersections with

traffic lights or without traffic lights have been studied (Esser and Schreckenberg 1997,

Chopard et al. 1998), but a full consideration of these and several other road features is

also needed. One of the main efforts in relieving congestion is to improve traffic control

strategy and traffic lights have been investigated by topological methods (Cremer and

Landenfeld 1998). The paths of traffic in urban networks is one of the basic problems to

be met in modelling and has been addressed in by Nagel (1998), van Laak and Toorner

(1998) etc. These papers on urban networks represent the state of art on this topic to

some extent and put forward some interesting ideas to be investigated further.

2.4.2.1 Intersections with and without traffic lights

Chopard et al. (1998) first suggested the use of “a rotary” to simulate a junction.

The rotary can be thought of as a CA ring allowing several one-dimensional CA to be

interconnected. This is a generic way to represent intersection without traffic lights. The

intersection can have any number of branches and numerical implementation is

relatively simple. The rotary acts as a connection, which connects all branches to form a

system, and a separation, which also separates those branches into individual sub-

systems. A common rule is that the car in the rotary has priority over any entering car.

The simple CA update rules have been used, such as CA-184 (Section 2.1.3.1).
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Manhattan-like grid street networks have also been studied with and without

traffic lights (Chopard et al. 1998). The situation without traffic lights corresponds to

equally likely behaviour at each rotary junction. The interesting result is that queues are

more likely to form and the global mobility is less in the situation with traffic lights.

The model of Chopard et al. has had some success in exploring some features of

intersection without traffic lights. The problem is that all cars from different branches

have equal priority to move in the rotary. In reality, however, on a junction without

traffic lights, traffic flow is governed by yield rules (or priority regulations or “give-

way” rules). The vehicles from the major roads have priority over cars from minor roads.

The Chopard method may be applied to all-way stop controlled (AWSC) interactions,

but it cannot be applied to two-way stop-controlled (TWSC) intersections.

Esser and Schreckenberg (1997) have also tackled the intersection without traffic

lights. The method used is to set a flag (a variable) to control leaving the minor road.

The switching on of the leaving flag (i.e. change of the state of the variable) depends on

the number of vacant cells at the intersections of the major road. When the leaving flag

is on, vehicles on the minor-street can go. This method has also been used in

intersections with traffic lights. There is one flag on each road of intersection. The

switching on of the leaving flag corresponds to the green light and traffic light sequence

is determined by a predefined switch matrix.

2.4.2.2  Model of traffic light strategy

In the paper of Cremer and Landenfeld (1998), a mesoscopic model for saturated

urban road networks has been developed. Basically, the model neglects any dynamic

details of the vehicles and any other elements that are not important for flow control in

over saturated networks, i.e. those where traffic is stopped or jammed. The model

describes the dynamic state of individual vehicles in a simplified manner. They have

only two speeds; zero if the vehicle in a waiting queue, the other equal to 50km/h if

moving. The details of acceleration, deceleration and lane-change have been omitted.

When a green light shows, the vehicle in the queue will move directly to the next point
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downstream in one time step. The number of vehicles that move depends on the duration

of the green light. The author also used a topology editor to synthesise a large variety of

network topology.

The model simplifies the network as a whole and can be used to test, evaluate

and compare control strategies for congested road networks. Traffic control strategy is

seen as the only method to relieve congestion. Cremer and Landenfeld (1998) also

indicated that the following performance criteria may be used to test, evaluate and

compare signal strategies for congested networks, e.g. travel time, number vehicles in

the network, utilisation of green time.

The underlying message of the  Cremer and Landenfeld (1998) is similar to that

of Chopard et al. (1998) in that the details of dynamics are seen to be often irrelevant at

the level of the whole urban networks.

2.4.2.3  Paths of vehicles

A fundamental problem with urban network modelling is also how to determine

the path of the vehicles in the networks. If a realistic traffic simulation is attempted, the

knowledge of the time-dependent path of each vehicle is crucial (Chopard et al. 1998).

Normally that information is both unknown and extremely difficult to collect.

When information on each turning operation is unknown, percentages are

assigned to different directions. For example 50% straight, 20% left and 30% right

(Nagel 1998). Modelling is, de facto, based on the fact that an individual vehicle does

not have any predetermined destination, but randomly moves through networks. From

the network level, the model is only concerned with collective behaviour is what the

model concerned. For the Duisburg network, an attempt was made to obtain accurate

information by using 51 checkpoints for turn counts, which could be updated every

minute. The turning count could be thus be directly derived for 56 directions (Esser and

Schreckenberg 1997). However it was still not found possible to obtain complete overall

traffic information even at the current checkpoint positions, since the number of

checking points on the network border was insufficient.
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An alternative approach to path determination is to use origin-destination (OD)

matrices, but this information is also not available for most cities. Trips for people going

to work may not change form Monday to Friday and demographic data on working

patterns may be available, but information on non-working trips is not available. A

micro-simulation project on drive activities (i.e. sleeping, work, shopping) has been

piloted by Beckman et al. (1996) and others. Nagel (1998) noted that it has so far little

insight into what is “driving” the type of micro-simulation.

Even given a time-dependent OD matrix and a traffic network, the allocation of

paths is still a problem, since assuming that all drivers are perfect rational decision-

makers and have full information about current traffic states, there still be different

criteria for them to decide which paths they take. The optimal routes are different based

on different criteria, such as travel time, route length, traffic density, route simplicity

(van Laak and Toorner 1998) and “preferences”.

Some work (Nagel 1998, Chopard et al. 1998) have chosen only one criterion of

travel time. The basic idea is that for any route from A to B (any two locations in a

network) time taken is the same. Otherwise, if a trip takes less time because it is less

congested than another, some driver will find it, and balance the respective traffic loads

(Chopard et al. 1998).

This criterion may be over-simple. Suppose one path from A to B needs T

minutes and the length of this path is L kilometres, another one is (T +α) minutes but the

length is (L –β) kilometres, the path taken will depend on the trade-off time α and length

β. That decision will almost certainly be different for different individuals.
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2.5 Summary

In this chapter, we reviewed micro-, mecro- and macro- scopic traffic flow

models. In particular, car-following models, multilane traffic flow models, CA models

and traffic flow in urban networks are examined and provide fundamental building

blocks for our research topic.

As car-following behaviour is a process characterised by “vagueness” rather than

determinism, any rigid formula may fail to describe the nature of driver behaviour.

Consequently fuzzy-logic based models and stochastic traffic CA models are becoming

increasingly popular in modelling traffic flow.

In our review, we focus on car-following theory as it is considered in all

microscopic simulation models as well as traffic theory. Clearly all models (e.g.

PARAMICS-CM, MITRAM, INTRAS, CARSIM, etc. as in Section 2.1), which belong

to car-following theory, only simulate the reaction of the following vehicle to the

headway. Therefore, there is no direct link between car following theory and our

research, which is to simulate driver behaviour and interaction between vehicles from

two or more streams. However, the review on car-following theory is essential to

understand state-of-art technique to simulate driver behaviour and interactions.

The design of lane-changing rules is a main task for multilane traffic modelling.

Many criteria for lane-changing have been defined in terms of speeds and spaces.

Stochastic processes are also introduced, but, as mentioned previously, some issues still

remain unsolved.

As urban networks have a special context (Section 2.4), CA models have been

intensively used to simulate traffic flow in urban networks. The advantages of using CA

models are obvious, as both microscopic features and macroscopic properties can be

investigated. Therefore, we will use CA models to simulate unsignalised traffic flow at

urban and inter-urban networks.
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Chapter 3

Single-lane TWSC Intersections

3.1 Introduction

Two types of unsignalised intersections have been the main focus in modelling

uncontrolled flow. These are the two-way stop-controlled intersection (TWSC) and all-

way stop-controlled intersection (AWSC). Because AWSC is mostly used in North

America, the focus of this chapter is TWSC intersections, which are close to the UK and

Ireland situation.

Traffic flow at a TWSC intersection has to observe both priority and stop rules.

Priority rules are applied in the following ways:

• All entering vehicles give way to all vehicles on the intersection

• A right-turning (RT) vehicle from a major-stream gives way to the oncoming

straight-through (ST) or a left-turning (LT) vehicle from another major-

stream in Ireland and the UK (however, a LT vehicle gives way to the RT

vehicles in New Zealand, for example, so there are national variants with in

broader groups)

• A vehicle from a  minor-street gives way to all vehicles on the major roads

• A RT vehicle from a minor-street gives way to the oncoming ST or a LT

vehicle from another minor-street

Stop-rule (“stop sign” rule) is that a vehicle from a minor-street must stop before

entering the intersection (even there is no vehicle on the major-street).

American engineers use a ranking system to describe the above rules, which is

given by the Highway Capacity Manual (Transport Research Board, 2000).

The research on traffic flow at TWSC intersections has focused on performance

measurements, such as capacity, queue-length and delay. The entry capacity (or

capacity) of an intersection is the number of vehicles passing through an entrance road
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per unit of time (normally an hour—vph), which is different from throughput.

Throughput is the number of vehicles, which navigate through the intersection in a

given time.

Both empirical and analytical methods have been used. Kimber’s capacity model

(Kimber 1980) and the linear capacity model (Brilon et al. 1997) belong to the empirical

method. The most common analytical method is that of the gap-acceptance model and

most TWSC intersection capacity models are based on gap-acceptance  (Tian et al.

1999).

Cellular automata (CA) models provide an efficient way to model traffic flow on

highway and urban networks, (Nagel and Schreckenberg 1992, Chopard et al. 1998 and

Wahle et al. 2001 and references, Section 2.1.3). The CA model is designed to describe

stochastic interaction between individual vehicles, independently of headway

distribution. It can then be applied to most features of traffic flow, whether or not these

can be described by a theoretical distribution. Features modelled may include multi-

streams on the major road, heterogeneous vehicles (passenger and heavy vehicles), and

intersections with or without flaring.

3.2 Background

3.2.1 Gap-acceptance models

Gap acceptance models widely used in calculating capacity of a TWSC

intersection. Basically, there are based on the notion that a driver will take the

opportunity to move onto the intersection when the gap is larger a particular size

(Troutbeck and Brilon 1997).

The basic assumption of gap-acceptance models is that the driver will enter the

intersection when a safe opportunity or “gap” occurs in the traffic. The Gap is measured

in units of time and corresponds to headway, (defined as distance divided by speed).

Critical gap and follow-up time are the two major parameters used in various gap-
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acceptance models. The critical gap is defined as the minimum time interval between

two major-stream vehicles required by one minor-stream vehicle to pass through. The

follow-up time is the time span between two departing vehicles, under the condition of

continuous queueing. The values of critical gap = 3-5.2 seconds, follow-up time = 2-3

seconds, and minimum headway  = 1 or 2 seconds were recommended (Troutbeck 1984,

Flannery and Datta 1997).

In order to use the gap acceptance model, the distribution of gap sizes has to be

known first. Several distributions have been proposed, such as exponential, displaced

exponential and dichotomised (Schuhl 1955) distributions. However, the M3 distribution

model proposed by Cowan (1975) has been widely accepted (Troutbeck and Brilon

1997, Hagring 1998 and 2000, Tian et al. 1999)

Cowan’s M3 distribution assumes that a proportion α, of all vehicles are free to

interact, travel at headways greater than tm and have displaced exponential headway

distributions, while the remaining 1-α bunched vehicles have the same headway of only

tm.

Gap-acceptance models are, however, unrealistic in general assuming that

drivers are consistent and homogenous (Tanner 1962, Robin and Tian 1997). A

consistent driver would be expected to behave in the same way in all similar situations,

while in a homogenous population, all drivers have the same critical gap and are

expected to behave uniformly (Plank and Catchpole 1984). In any simulation, however,

driver type may differ and the critical gap for a particular driver should be represented

by a stochastic distribution initially suggested by Bottom and Ashworth (1978), but

ignored until relative recently.

Estimation of the critical gap has attracted much attention, with use of a mean

critical gap also proposed (Harwoood et al. 1999, Tian et al. 2000, and Troutbeck and

Brilon 2001). Maximum likelihood estimation of the mean critical gap has been widely

accepted (Harwoood et al. 1999, Tian et al. 1999 and 2000, Troutbeck and Kako 1999,
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Tracz and Gondek 2000), but has not influenced the basic assumption, which is still that

all drivers are consistent.

The critical gap is clearly a key parameter for various gap-acceptance capacity

models and significantly affects the final results. However, the critical gap distribution

and its parameters can not be directly observed in the field (Kyte et al. 1996). Only

rejected and accepted gaps can be directly measured, and the critical gap estimated,

based on the largest of these.

Determination of the critical gap distribution has been the focus of much effort.

Over 30 methods have been published and all produce different results for the critical

gap (Brilon et al. 1997). A comprehensive review and simulations has been made by

Brilon et al. (1997). The maximum likelihood (Troutbeck 1992) and Hewitt’s method

(1983, 1985 and 1988) are recommended by the authors based on their criteria and

simulations. The maximum likelihood method has also be recommend in the Highway

Capacity Manual (1990) and also by Tian et al. (2000) and Hagring (2000) in very recent

work.

While, the original maximum likelihood approach can be braced back to Miller

and Pretty (1968). More explicit procedures are described by Troutbeck (1992).

Basically, the maximum likelihood approach assumes that all drivers are consistent and

calculated as given above, the mean critical gap has been found to be a reasonable

quantity for the representation of average driver behaviour (Troutbeck 1992).

3.2.2 Critical review of gap-acceptance models

There are, however, several phenomena that gap acceptance fails to take into

account, most notably inconsistency and heterogeneity of driver behaviour, priority

sharing, give-way between two vehicles from the opposite major streams.

It seems clearly that in any real situation, critical gap is not a constant value for

different drivers or for each individual driver over time (Tanner 1962), since driver

behaviour is both an intrinsic characteristic of individual experience, as well as a
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response to the current environment. A consistent driver is expected to behave in the

same way in all similar situations, while in a homogenous population, all drivers have

the same critical gap and are expected to behave similarly (Plank 1984). It is

unreasonable to consider drivers to be homogenous and consistent in the real world

(Troutbeck and Brilon 1997), thus in any model, the critical gap for a particular driver

should be represented by a stochastic distribution. Also, a group of drivers will have

different values of the critical gap or different stochastic distributions of the critical gap.

Bottom and Ashworth (1978) further indicated that permitting inconsistent drivers was

more realistic than permitting heterogeneity in the driver group, since the major source

of variability in gap acceptance was likely to be due to individual drivers and not

variation between them.

Tian et al. (2000) investigated the factors affecting critical gap and follow-up

time, concluding that drivers use shorter critical gap at higher flow and delay conditions.

Many other factors have also been found to affect the value of critical gap, such as

intersection geometry, traffic movement, vehicle type, speed limits, gender, age, time of

day etc. (Harwood et al. 1999, Tian et al. 2000). Thus, a critical value, obtained for any

given situation, is unlikely to be generally applicable.

Priority sharing: According to the priority rules, the vehicles from major

streams have absolutely priority over the vehicles from minor stream. However in

reality, priority sharing always occurs. Priority sharing is a phenomenon, which allows

for non-absolute priority of the major-stream vehicles. This phenomenon is usually

believed to be caused by the high volume of traffic flow (Troutbeck and Kako 1999) and

saturation on the minor stream (Harwood et al. 1999).

It may be generated by aggressive behaviour of the driver from a minor stream.

It may also be the result of courtesy of a driver from one of the major streams. Harwood

et al. (1999) believe it is most often caused by the minor-stream driver compel a major

stream driver to give way by using a gap so tiny that the latter has to reduce speed.

Based on field observations, Troutbeck and Kako (1999) indicated that major-stream

vehicles could be slightly delayed to accommodate a minor vehicle. Harwood et al.

(1999) described the phenomenon in terms of speed reduction to 85% for a major-stream
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vehicle. No matter what the triggers, the facts are that drivers from minor streams will

use technically too small gap and the drivers from major streams will experience

consequent delay.

Traditional gap-acceptance models have failed to take this phenomenon into

account, but more recently research (Troutbeck and Kako 1999) has tried to overcome it

by adding an additional factor “C” value in the capacity formula to justify the priority

sharing effects. This C value ranges from 0 to 1 and depends on the headway

distribution. Although this modification can improve the accuracy of previous gap

acceptance models, it has provided little help in analysing the TWSC operation unless

there is evidence or conclusion that priority sharing is directly related to the headway

distribution.

Give-way: The phenomena of “give-way” also occurs between vehicles from two

different major stream directions as one RT vehicle needs to give way to a ST or LT

vehicle from the opposing direction stream. The effects depend on the turning and flow

rates. When the vehicle from a major stream is waiting for a suitable gap, no ST or RT

vehicle from a minor stream can drive into the intersection. Therefore, the capacity of an

entrance does not depend solely on the gap distributions of the major streams, but also

on the delay that the vehicle from the major- stream will experience.

Conflicts: Gap-acceptance models have also failed to consider conflicts between

the two major-streams, which change the headway distributions. When RT vehicles (for

left-side driving) in the major-stream give way to ST vehicles from the opposing street, a

queue will form on the major-stream behind the subject vehicle, if the road is narrow

(i.e. turning-left and going-straight vehicles share the same lane). The headway

distributions affected so that the original gap-acceptance criteria no longer apply. No

vehicle from a minor stream may drive onto the intersection unless it turns left.

Platoons: It is difficult to apply the gap-acceptance model on an unsignalised

intersection in an urban network, since adjacent intersections with traffic lights will have

grouped the vehicles into a queue (or queues) during the red signal phases, and there will

thus be platoons present, (i.e. a filtering effect). The filtering of traffic flow by traffic
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signals has a significant impact on capacity and performance of an unsignalised

intersection (Tracz and Gondek 2000).

Robinson et al. (1999) indicated that the gap-acceptance model could be applied

only when no platoon is present. Otherwise, no minor-stream vehicle can enter the

intersection, as the mean headway inside a platoon is supposed to be less than the critical

gap. If the traffic signal cycles are known and are co-ordinated, the platoon pattern may

be predictable. If the lengths of signal cycles are different and independent, the pattern is

less predictable (Robinson et al. 1999), and traditional gap-acceptance is impossible to

apply.

Even without traffic lights present, platoon formation in traffic flows is

unavoidable, as the speeds of vehicles are different. At the same time, the critical gap is

not easy to define and implement when several traffic streams are involved (Tian et al.

1999). Hence, using the critical gap and headway distribution may be too simple alone

for the complexity of the interaction at many intersections.

In gap-acceptance models, the effect of directional flow is also not specifically

modelled, with the driver of a vehicle travelling straight through facing a different

decision based on whether major street vehicles approach from the left or from the right

(Tian et al. 2000).

Our approach: New CA model proposed in this chapter uses an analogous but

more flexible methodology compared to that of gap-acceptance. It not only facilities

understanding of the interaction between the drivers, but can also be applied to situations

for which headway distributions are insufficient to describe traffic flow.

A CA ring was first proposed for unsignalised intersections (Chopard et al. 1995

and 1998). All entry roads are “connected” on the ring. The car “on the ring” has priority

over any new entry. However, there is no differentiation between the major and minor

entry roads. All entry roads have equal priority and all vehicles have equal priority to

move into the ring (intersection), which compromises usual TWSC rules (for details see

Section 2.4.2.1). A further CA model variant for intersections described (Esser and
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Schreckenberg 1997) has also not considered detailed interactions between drivers. The

approach described below seeks to remedy these shortcomings.

3.3 Methodology

A two-speed one-dimensional deterministic CA model (1DDCA), (Yukawa et al.

1994, Chopard et al. 1998, Wang and Ruskin 2001, Ruskin and Wang 2002) is used to

simulate the interaction between the drivers, in which the speed of vehicle is either 0 or

1(vmax=1), on intersections only. A vehicle can move only one cell in a given time-step.

While multi-speed CA models, (Nagel and Schreckenberg 1992), critical to

successful modelling of freeway traffic are somewhat similar, these have many features,

which are superfluous for urban traffic such as intersections and roundabouts or to

representation of driver behaviour (Chopard et al. 1996 and 1998). Moreover, vehicle

dynamics are often less important than driver interactions in simulating queue formation

in urban networks (Queloz 1995 and Chopard et al. 1998).

One time-step is equal to 1 second throughout this thesis. The length of each cell

corresponds to the average speed on a given section of the road. For example, for two-

speed 1DDCA, if average speed of passing the intersection is 32.4 km/h, the length of 1

cell = 9 m, while if average speed is around 50km/h, then the length in each cell = 13.89

m.

A three-speed 1DDCA (Nagel and Schreckenberg 1992, Nagle 1996), is used to

model the traffic flow on straight roads only (two-speeds 1DDCA is applied to

intersection area only) in urban networks. For a three-speed 1DDCA, speed of vehicles

is 0, 1 or 2 (vmax=2), corresponding to speed of 0, 25 km/h and 50 km/h. Length of 1 cell

= ~7 m in three-speed 1DDCA.

We can either increase the length of each cell or increase the number of speeds if

we want to apply our model to interurban networks. In other words, our models do not

have any limitation on speeds and can be applied over a wide range. Therefore, they can

be applied to either urban or inter-urban networks.
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3.3.1 Up-date on single-lane roads

There are three actual speeds on the single-lane road: 0, 1 or 2, but two possible

speeds for the next time step: 1 and 2. If a vehicle does not move in this time step (actual

speed = 0), the maximum speed will be 1 for the next time step (the possible speed = 1).

If the vehicle moves one or two cells (actual speeds = 1 and 2) in current time step, the

maximum possible speed will be 2 (the possible speed = 2). These rules on speeds are

for simulating the acceleration and deceleration process.

The update rules are show as follows. C t
n designates the state of the nth cell at

time-step t. If C tn >0, there is a vehicle in nth cell at t’th time-step and the possible speed

is C tn. The algorithm will be:

• If C tn =1 and C t(n+1)  =0, then C (t+1)
(n+1) = C tn+ 1and C (t+1)

n = 0 (If the possible

speed is 1 and the cell in front is vacant, then the vehicle will move one cell and

also increase its speed to 2 in next time step).

• If C t
n  =1 and C t(n+1)  > 0,  then C (t+1)

n = C t
n (If the possible speed is 1 and the

cell in front is occupied, then the vehicle will not move and the speed is

unchanged (=1) in next time step).

• If C t
n =2 and C t

(n+1) >0, then C (t+1)
n+1 = C t

n -1and C (t+1)
n = 0 (If the possible

speed is 2 and the cell in front is occupied, then the vehicle will not move and

the speed decreases to 1 in next time step).

• If C t
n  =2 and C t

(n+1)  = C t
(n+2)  =0 , then C (t+1)

(n+2)  = C t
n  and C (t+1)

(n+1) = C
(t+1)

n  =0 (If the possible speed is 2 and both two cells in front are vacant, then

the vehicle will move two cells forward and the speed is unchanged(=2) in next

time step).

• If C tn  =2, C t(n+1)  =0 and C t(n+2)  >0 , then C (t+1)
(n+1)  = C tn  and  C (t+1)

n  =0 (If

the possible speed is 2 and only one cell in front is vacant, than the vehicle will

move one cell forward and the speed is unchanged in next time step).

3.3.2 Driver behaviour categories

A two-stream intersection (Figure 3.1) is used to illustrate the driver interaction.

Theoretically, a vehicle at the stop-line of a minor-stream can drive onto the intersection,
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without interrupting the major flow, when the space between two vehicles on the major-

stream is three cells or more. Thus, three cells give the minimum theoretical acceptable

space.

Driver behaviour is categorised into four groups: radical, urgent, rational and

conservative. If a driver accepts a 3-cell space as the Minimum Acceptable sPace

(MAP) and enters the intersection, behaviour is rational. One cell space is required by

radical behaviour. The driver will take any space on the intersection without any

consideration of safety. The consequence is that the vehicle may generate gridlock (see

Chapter 4,5 and 6).  A 2-cell space corresponds to urgent behaviour, which may be the

result of e.g. misjudgement, over confidence in the vehicle acceleration, bad driving

habits, urgency of travel or the phenomenon of priority sharing. The effect is the

blocking of the vehicle that has priority by the sub-rank vehicle. Conservative behaviour

corresponds to MAP ≥ 4cells.

a b

a b
Figure 3. 1 Two-stream intersections: (a) rational, (b) conservative, (c) urgent, and (d)

radical.

Major-stream

Minor-stream

Space
Space

Major-stream

Minor-stream

Space
Space
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Harwood et al. (1999) indicated that drivers are likely to prefer longer gaps for

the more complex decision involved in turning, even though longer gaps are not required

theoretically. We thus expect that most driver behaviour can be classified as rational or

conservative.

The distribution of driver behaviour is expressed as four probabilities for

conservative, rational, urgent and radical behaviour denoted Pco, Pra Pur and Prad

respectively. Clearly

Pur + Pra + Pco + Prad = 1 (3.1)

According to the above driver behaviour distribution, each driver from a minor-

street at a stop-line of an intersection or right-turning from a major-street is randomly

assigned to one of four driver behaviour categories at each time-step. In this way,

heterogeneous and inconsistent driver behaviour is simulated. In other words, if a driver

is assigned to one category in this time-step and its space conditions are not met, the

vehicle is stationary in this time-step. The driver may be re-assigned randomly to any of

the four categories according to the behaviour distribution in the next time-step. If he/she

is assigned to a new category, his/her space requirements are thus changed.

3.3.3 Stop Sign Delay Time (SSDT)

According to the rules of the road, a vehicle from a minor-street has to obey a

stop sign before it can enter an intersection. Our simulation ensures that all vehicles from

the minor-street will stop for at least one time-step (equal to 1 second). For minor-street

vehicles travelling ST or RT, a two time-step delay is allowed, in order to make a

decision, (two major-streams are checked). We denoted the time required as stop-sign-

delay-time (SSDT). Thus, the follow-up time for a minor-street in the simulation will be

from 2 to 3 seconds, which agrees with the recommended follow-up time from observed

data (Troutbeck 1984, Flannery and Datta 1997).
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3.3.4 Comparing MAP method with gap-acceptance models

The main difference between our CA model, which is referred to as the MAP

method in this thesis, and gap-acceptance models in general, is that the MAP in our

model and the critical gap in the gap-acceptance model have different temporal and

spatial content, although both provide criteria for a driver to take action.

For the gap-acceptance model, where the conflicting flow includes more than

two streams, the gap is normally defined as the time taken for two vehicles from

conflicting streams to pass through the path of the subject vehicle. Without

distinguishing the direction that each vehicle comes from, the critical gap then has strong

temporal meaning but is weak in spatial detail.

However, in our model, the space required (in terms of different number of

vacant cells required in each conflicting stream) is clearly specified so that temporal and

spatial details are known for each different movement (e.g. RT, LT or ST). The temporal

details are derived from the speed conditions; the vehicle moves no more than one cell in

one time step, so time can be measured in terms of number of cells. The spatial meaning

is expressed precisely for different streams (details below), and the driver decision

process is thus fully specified.

3.3.5 Interaction at intersection entrance

Before we describe how to apply our MAP method to intersections, we address

the issue of time. In the CA model described, the states of all cells update

simultaneously. This means that the states of all cells have been updated in this time-step

and the vehicle moves onto the intersection in next time-step when the conditions have

been met. Figures 3.2 – 3.5 represent the current situation for available spaces and to

follow through on the movement, we consider the situation at the next time-step. (This

will be revised slightly in Chapter 6, for reason explained there).

For single-lane TWSC intersections, the minimal acceptable space conditions for

a vehicle from a minor-street to move onto the intersections in the next time step are
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shown in the following figures (the shaded cells). The conditions depend on the direction

of movement and driver behaviour. The detailed space criteria contains the requirements

for each marked cell, which is labelled with 0, a, b or c, having the following meanings:

• “0” means that  the cell is vacant

• “a” means that the cell is either vacant or occupied by a vehicle that will turn left

• “b” means that  the cell is not occupied by a RT vehicle

• “c” means that the cell is either occupied by a RT vehicle or vacant

0 0 0 b b 0 0 0 0 b b
0 a a 0 a a a

a b

Figure 3. 2 A ST vehicle from a minor-street: (a) rational behaviour, (b) conservative
behaviour.

The space conditions for the ST vehicle V to move into the intersection are

illustrated in Figure 3. 2. A rational driver needs to observe the 7 marked cells before

s/he can drive onto the intersection. In contrast, a conservative driver needs to check 9

marked cells (Figure 3.2 b).

c c
a a a a b a a a a a b

0 a a 0 a a a

a b

Figure 3.3 A RT vehicle from a minor-street: (a) rational, (b) conservative.

A

Major-street

A
Minor-street

A

Major-street

V
Minor-street
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Figure 3.3 indicates the conditions for a rational or conservative RT vehicle

driver to enter the intersection from a minor-street. A vehicle from the opposing minor-

street, ST or LT has priority over a RT vehicle from the given minor-street according to

the rules of the road. However, Tian et al. (2000) indicated that the priorities between

minor-street vehicles were not distinct. They indicated that drivers were observed to

enter the intersection on a first-come, first-served basis. The movement of a RT vehicle

from a minor-street does not need to consider opposing vehicles if one of the following

conditions is met.

• The first cell in the opposing minor-street is vacant

• A RT vehicle is the first vehicle in the opposing minor-street

• The first vehicle in the opposing minor-street arrives at a stop-line in less than

SSDT (Section 3.3.3)

b
0 a a 0 0 0

a b

Figure 3.4 All rational: (a) a LT vehicle from a minor-street
(b) a RT vehicle from a major-street (MaRT).

For rational drivers, the space conditions for a LT vehicle from a minor-street

(MiLT) are shown in Figure 3.4a and the space conditions for a RT vehicle from a

major-street (MaRT) are shown in Figure 3.4.

Heterogeneity of Vehicles: The case for a long vehicle can be considered briefly

based on occupation of more than one cell (e.g. two cells, see Figure 3.5). An additional

cell space is needed for a long vehicle to move onto the intersection. Rational movement

A

Major-street

A left-turn vehicle
Minor-street

MaRT
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through the intersection requires a check on the same number of cells that a conservative

car driver in the simple model will perform.

Intersection Variants: A flared minor-street increases the capacity of an

intersection. Two vehicles can stop and depart from the stop line simultaneously as a

result of a large curb radius or a parking prohibition. These conditions transfer a single-

lane into a limited two-lane street. In a recent study (Robinson et al. 1999), the authors

have indicated that the magnitude of this effect depends, in part, on factors such as the

turning-movement volume and the length of the second lane etc.

0 0 0 0 b b 0 0 0 0 0 b b
0 a a a 0 a a a a

a b

Figure 3.5 A long going-straight vehicle from a minor-street: (a) rational (b) conservative.

H

N

Figure 3.6 Intersection with flaring.

Major-street

AA Minor-street

Major-Major-street

Minor-
stream

AG

Minor-street

Flaring
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In the case of just one space in the second lane, which is very common, the

intersection can be simulated as in Figure 3.6. One extra cell G is located on the corner

of the intersection. If cell G is free and the vehicle in cell N is a LT vehicle, the vehicle

can move into cell G. If RT or SA, the vehicle will not move into cell G and will

continue straight ahead. A rational driver in cell G needs three vacant-cells to move onto

the intersection in the next time step. Cell H also can be used by a LT vehicle from a

major-street.

3.4. Single-lane Intersection Simulation

Based on the assumptions described, we studied performance measures

(capacity, time delay and queue-length) of a TWSC intersection under different values of

traffic flow parameters, such as arrival rate (traffic volumes) and turning rate (turning

proportions). In order to obtain the maximum capacity, the given street must be fully

saturated. Experiments were carried out for 36,000 time-steps (equivalent to 10 hours)

for a street-length of 100 cells for all approaches. All driver behaviour is assumed

rational unless otherwise specified. The arrival rate (AR) is the probability that vehicles

arrive at one end of a road in a given time period. Vehicles arrive at random with

Poisson distribution,  (where AR = λ ≤ 0.5 (1800vph) in general for free flow). If all

arriving vehicles pass the intersection without queueing, the flow rate corresponds to

AR, (for AR=0.1, 0.2, the flow rate is equivalent to 360vph, 720vph respectively).

3.4.1 Capacity of a minor-street

Figure 3.7. Overall performance of intersection

Overall performance from 
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Vehicles are assumed to converge from all directions. Arrival rates of the two

major-streets are taken to be equal. Arrival rates of minor-streets are set to the maximum

flow rate (1800 vph) that the single-lane road can manage. On both major-streets, LT

rate (LTR): ST rate (STR): RT rate (RTR) = 0.2:0.6:0.2.  On both minor-streets, LTR:

STR: RTR = 0.4:0.2:0.4. Figure 3.7 shows the entry capacity of the minor-street (roads 2

or 4). The entry capacity is nearly zero when arrival rates of the major-streets > 1080

vph.

Figure 3.8 Capacity of minor-street of T-intersection with TRR
of minor-street and FRR of major-streams.

When a RT or ST vehicle from a minor-street involves two major-streams, the

capacity depends on their flow rates and configurations. In order to determine impact of

different turning rates and different major-stream combinations, a T-intersection is

studied, which contains only RT and LT vehicles in the minor-stream. All major-streams

are assumed to have only ST vehicles. The total number of vehicles per hour in major-

streams is assumed to be 1440 vph, which is split between the near-lane stream,

(vehicles coming from the right), and far-lane stream, (vehicles coming from the left).

Both left-turning-rate (LTR) and right-turning-rate (RTR) are varied. The differences in

turning rates of the minor-stream can be expressed in terms of turning rate ratio (TRR

=LT rate: RT rate). The difference in flow rates of the two major-streams can be

expressed in terms of flow rate ratio (FRR= flow rate of near lane: flow rate of far

lane).
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Table 3.1 and Figure 3.8 indicate that both TRR and FRR affect capacity and

both ratios should therefore be considered. In our simulation, TRR has been varied by

increasing the number of RT vehicles in the minor-street. We find that the capacity of

the minor-stream decreases in general when TRR decreases. However, this effect differs

as FRR varies. When FRR increases (by increasing flow rate of near lane), the decrease

in capacity is less marked, and vice versa.

Table 3.1 Capacity of Minor-street vs. TRR and FRR

Capacity (vph)

FRR(=Flow rate of near lane : Flow rate of far lane )

TRR ( =LT rate: RT

rate)

1440:0 1080:360 720:720 360:1080 0:1440

1:0 196 397 585 755 900

0.75:0.25 193 363 483 527 415

0.5:0.5 190 331 413 408 286

0.25:0.75 183 308 361 337 217

0:1 177 288 321 286 180

3.4.2 Capacity of a major-street

Figure 3.9 Traffic configurations of shared lane on the major-streets

Right-turning vehicles from major-street (MaRT) in a shared major-street, where

RT, ST and LT vehicles are on the one lane, can block ST and LT vehicles behind and in

the same stream. RT rates (RTR) of major-streams thus have great impact on capacities

of major-streams. Two configurations have been studied (Figure 3.9), with the analysis

of major-street capacity similar to that of Chodur (2000).

RTR

Capacity

RTR1

RTR2

Conflicting stream (CS)

Capacity1

Capacity2

(a)
(b)
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Figure 3.10 Capacity of a major-street in situation of Figure 3.9(a) for rational driver
behaviour

Figure 3.10 shows unsurprisingly that the capacity of the major-stream declines

rapidly with RTR and flow rate of conflicting major-stream increase (Figure 3.9(a)),

where only one major-stream has RT vehicles. Table 3.2 for major-stream capacities,

(both with RT vehicles in Figure 3.9(b)), yields a similar relationship (Expression 3.2) to

that found from empirical study by as found also by Chodur (2000).

Capacity1: Capacity 2 = RTR2: RTR1 (3.2)

Table 3.2 Capacities and capacity ratio vs. right-turning rate ratio
RTR1:RTR2

0.4:0.1 0.3:0.1 0.2:0.1 0.2:0.2 0.2:0.3 0.2:0.4

Capacity1:Capacity2 ~1:4 ~1:3 ~2:1 1:1 ~3:2 2:1

Capacity1(vph) 413 541 758 1164 1373 1480

Capacity2(vph) 1659 1616 1508 1164 911 740

3.4.3 Queue-length and Delay

The length of a queue on a road is defined as follows: the queue starts to form at

the intersection, and will grow along the road opposite to the direction of movement of

vehicles. The furthest two adjacent cells, which are occupied by two vehicles, indicate

the end of queue. This definition means that a vehicle is in the queue if the vehicle can

not move in next time step because the cell in front is occupied.
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The following assumptions are made in the simulations:

• Major streets ( approaches 1 and 3): LTR: STR: RTR = 0.2:0.7:0.1 and

FRR=0.15:0.15 (AR1 =AR3 =0.15)

• Minor-streets (approaches 2 and 4):LTR: STR: RTR= 0.4:0.2:0.4 , AR2 =

0.05

In this case, the capacity of approach 4 is 518 vph. When arrival rate > 518 vph

(i.e. AR4> 0.144), the queue grows rapidly to maximum (= length of approach).

Figure 3.11. Queue-length of approach 4.

Figure 3.11 gives some of the results for minor street queue-length for the degree

of saturation (= arrival rate /capacity) 0.90 (i.e. AR=~0.13). The maximum queue-length

reached on approach 4 was 42 cells, but was <27 cells for 95% of the time queue-lengths

< 27 cells. The corresponding maximum delay time was found to be 227 time-steps

(seconds) and 95% of the drivers experienced less than 113 time-steps delay. 50 % of

drivers could expect a delay of less than 18.5 time-steps.

3.4.4 Driver behaviour

Table 3 illustrates the effects of different driver behaviour populations. In each

scenario, turning rates and arrival rates are fixed, with AR of three approaches < 0.5,

AR4 = 0.8 is much large than 0.5 for approach 4 (a minor-street) only.
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An approximate linear relationship is observed between the capacities and driver

behaviour ratio. Hence we could use the capacities to roughly calibrate the driver

behaviour distribution.

Table 3.3 Capacity vs. diver behaviour

Driver Populations ( Rational :Conservative)

Modelled Scenarios 1:0 0.75:0.25 0.5:0.5 0.25:0.75 0:1

Scenario 1 518 492 464 435 406

Scenario 2 412 377 343 308 269

Scenario 3 527 504 482 461 437

An approximate linear relationship is observed between the capacities and driver

behaviour ratio. Hence we could use the capacities to roughly calibrate the driver

behaviour distribution.

3.5. Summary

A new cellular automata model is proposed to simulate directly the interactions

between drivers at TWSC in urban networks using space considerations. The

heterogeneity and inconsistency of driver behaviour is also investigated. The method can

be easily applied to many features of urban traffic, where gap-acceptance models are less

amenable to study.

The capacity of the minor-street in a T-intersection not only changes with the

flow rates of major-streams, but also changes with flow rate ratio. Flow rates

corresponding to each stream must be distinguished. The capacity of a minor-stream

decreases when LTR decreases, but this is again dependent on FRR. When FRR

increases (flow rate of near-lane increases), the decrease in capacity is less marked.

The major-street capacities depend on the flow rate of the opposing stream and

RT rates of both major streets.
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The queue-length and delay time of each street in each time step can be directly

obtained from the model. Also, the relationship between the performance measurements

of intersections and parameters of traffic flow are easily derived from the simulation.

Lacking real data, the distribution of driver behaviour is arbitrarily decided in the

experiments, but the model can be used to investigate various assumptions and

conditions of performance for TWSC intersections.
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Chapter 4

Multilane TWSC Intersections

4.1. Introduction

Much research has been done on traffic-light controlled intersections, but rather

less on unsignalised urban intersections. In particular, research is very rare on multilane

unsignalised intersections. The unwritten perception seems to be that such research is

largely unnecessary, since most traffic is controlled. Unfortunately this is not in fact the

case and where inter-urban sprawl is considered, is even less likely to be universal.

Considering the number of unsignalised intersections and comparing it with the number

of signalised intersection in a traffic network (e.g. Dublin, the aerial photographs

provided by Mapflow http://www.mapflow.com/webdemo/demomap.asp), modelling

intersections with several lanes is still well founded. The area shown in the map

(Appendix E) is less than 3% of the area of Dublin. It is close to the city centre. In this

area, the number of intersections without traffic lights is over 30, but the number of

intersections with traffic lights is less than 16. This can give us an approximate picture,

for this example of part of an urban network, of the percentages  which apply.

In particular, situations which cause problems at unsignalised intersections need

to be documented and a number of “what if” questions need to be asked about the

changes in flow likely to be caused by the introduction of traffic lights or other control

options.

In addition, intersection manoeuvres provide information on use of other urban

and inter-urban road features, not least those of roundabouts. These attempts to reduce at

least some of cross-traffic problems, but also introduce others, not least because these

are frequently unsignalised (or wrongly signalised) also. Consequently, an understanding

of the natural flow dynamics for these configurations is extremely important in any

attempt at planning. Furthermore, it is now widely accept that the influence of human
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behaviour on traffic system operation is of great significance and has been the focus of a

number of studies, e.g. Lajunen et al. (1999), Norris et al. (2000) and Hakkert et al.

(2001).

In this chapter, we concentrate on the two-lane two-way stop-controlled (2-

TWSC) intersection.  In particular, we introduce a new process of lane allocation. At the

end of the chapter, modelling traffic flow at a two-lane traffic-light controlled (2-TLC)

intersection is also reported in order to compare 2-TWSC and 2-TLC intersections.

4.2 Background

Two types of multilane TWSC intersections are commonly used in urban areas.

The difference between them, in general, is whether there is a “bay” between the two

different major stream directions. There are two major functions of the bay area: (a) to

allow a RT vehicle to wait there for an opportunity to progress, (b) to allow a straight-

going or RT vehicle from a minor street to drive onto the bay area first and stop there to

wait an opportunity to progress to the second step. This type of intersection therefore is

also known as “two-stage priority” (Brilon and Wu 1999), and has been studied,

Bonneson and McCoy (1997), Brilon and Wu (1999), and Bonneson and Fitts (1999).

                   Road  2

Road 1              Bay Area  Bay Area Road 3

                 Road  4

Figure 4.1. Two-stage priority intersection

Minor-street

Major-street
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A TWSC multilane intersection with bay area (Figure 4.1) has many similarities

to a multilane roundabout (details in Chapter 6). Basically, an entering vehicle only

needs to check a single direction of traffic flow. Hence, in this chapter, we mainly

concentrate on a TWSC multilane intersection without a bay area (Figure 4.2), which has

two lanes in each major directional flow and is thus the more general and complicated

case. In this case, the ST/ RT vehicle from a minor street needs to check four/three

traffic streams and two directions of traffic flow before entering the intersection. These

situations arise in urban and (even more commonly) interurban areas. One example in

Dublin is Gardiner Street (Upper, Middle and Lower), located close to the city centre

and with two lanes in each major direction flow. Over five intersections on this street do

not have traffic lights. These can also be readily located on aerial photographs provided

by Mapflow (ref. previous section).

Basically, vehicles at a TWSC multilane intersection observe the same priority

rules and stop rule as at a single-lane TWSC intersection (Chapter 3). The model of

traffic flow at a TWSC multilane intersection includes the following processes:

• Vehicle arrivals at the beginning of an entrance road ( e.g. 100 cells away from

the intersection )

• Lane allocation for vehicles in major flow

• Halts induced by stop-sign, i.e. Stop Sign Delay Time (SSDT), see Chapter 3.

• Vehicle movement along roads

• Interaction between drivers on the intersection

Vehicles from a minor street must obey the stop rule, i.e. vehicles must stop

before passing the stop-line. The delay experienced is then defined as Stop Sign Delay-

Time (SSDT)(as in Chapter 3). Our simulation ensures that all vehicles from the minor-

street will stop for at least two time-steps (equal to 2 seconds). In this chapter, we

assume that the SSDT times for a LT, ST and RT vehicle from a minor street are 2, 4

and 4 seconds respectively. Basically, the SSDT is the time needed for a vehicle to stop

and check the traffic situation once. If the situation meets the driver’s requirements,

he/she will begin to pass the stop-line, otherwise he/she will wait. The duration of SSDT
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thus depends on the number of lanes needing to be checked and the complexity of the

manoeuvre.

For a vehicle feeding into a major street, the vehicle needs to be allocated to a

lane before it can enter, (as there are two lanes for each direction). There is no need to

consider lane allocation for vehicles entering a minor entrance road, (considered to be

single-lane only). Given the requirements, imposed by movement through the major road

streams, we feel that this is justified, since major road traffic alignment is crucial to

successful negotiation of the interaction. The only type of vehicle, which needs to

negotiate one major stream only, is one, which turns left from the minor road and its

movement is essentially unchanged from that of a single-lane major/minor intersection.

In this chapter, we mainly focus on the second and the last two of the five processes (see

Page 53) identified above, as the first and the third processes are similar to those of

Chapter 3.

Hagring (1998) indicated that the process of lane allocation for a vehicle in the

major flow needs to be considered in modelling multilane traffic flow. He also indicated

that the lane allocation of major flow had a considerable effect on capacity. For example,

a vehicle from a minor-street enters an intersection depending not only on the flow rates

of major roads but also the distribution of vehicles on the major roads, (i.e. the traffic

situation on the intersection is dictated by lane-allocation process).

Likewise, RT vehicles on a major street need to give way to ST vehicles from

the opposite direction, queues may form on the right-lanes of major road (stream 3 and 4

in Figure 4.2). The queues are then obstacles to progress of subsequent ST vehicles.

Consequently the delays of ST and RT vehicles from minor streets are also increased. As

a result, the throughput of the intersection decreases and capacity of each minor road

decreases.
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4.3 Methodology

Figure 4.2 is an illustration of 2-TWSC intersection with the major roads (1 and

3), the minor roads (2 and 4), streams and key movement all highlighted. We define each

lane as a stream. For instance, if a major street has four lanes (there are two lanes in

each direction of traffic flow), each direction has two streams.

The action of a 2-TWSC-intersection system begins with vehicle arrivals on the

major or minor entry roads, where these are assumed to follow a Poisson distribution

with parameter λ. The λ (equivalent to arrival rate (AR)) can be expressed either in the

range of 0~1 (one time step = 1 second) or in the range of 0~3600 vph (in terms of

vehicles per hour). The two expressions are interchangeable. Before each vehicle arrives

on the major or minor entry roads, it has been randomly assigned to a destination based

on a probability distribution of directions. For example, if a % of vehicles arriving by

road 1 are assumed to turn right (i.e. turn into road 4), then these will be assigned a

particular number in order to guarantee that these vehicles will eventually turn into road

4.

Road 2

Stream 6

Stream  1
Stream 3

Stream 4
Road 1

Stream 2

Road 3

Stream 5

   Road 4

Figure 4.2. The intersection area where interactions between the vehicles occur

Minor-street

Major-street

Stop-line

Right –turning point for Stream 3 Right –turning point for Stream 4
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Arrival of a vehicle at the beginning of a feeder road (major- or minor- street) of

an intersection does not necessarily mean that the vehicle can immediately progress.

This also depends on the level of congestion on the road (for minor roads) or the

particular stream of the road (for major roads). When vehicles move along an entry road,

they retain their attributes, such as destination.

When a vehicle arrives at a stop-line from a minor street, it needs to check if

there is enough space for it to drive onto the intersection. The space criteria (update

rules) are defined as MAP (as in Chapter 3). When RT vehicles from major streets arrive

at the RT point (Figure 4.2), they also need to check if the space meets the MAP. Further

details on permitted movements are described in Section 4.3.3 below.

4.3.1 Lane allocation processes

We assume that a vehicle will stay in the lane after the vehicle is allocated to a

lane of a major road, although in reality, some lane-changing may take place. The reason

for this simplification is justified by the consideration that the intersection manoeuvre

requires correct lane-allocation. Previous lane-changing is thus assumed to be minimal

and can be disregarded.

We note, however, that a vehicle changes lane, normally, for the following

reasons:

• To access a predetermined direction

• To escape from a queue in front

• To avoid a stopping service vehicle in front, such as bus or delivering vehicle

• To gain additional speed

Vehicles that change lane because of the last two reasons are more likely to

change lane again, while the others imply that vehicles tend to stay in the lane after

changing. If we overlook the process of changing forward and backward, LT and RT

vehicles will finally end up in lanes that lead to their destinations, i.e. RT vehicles in the

right-lane and LT vehicles in the left-lane. Clearly, straight though vehicles can end up

on both lanes, unless specified by road signs. It is logically less likely for a driver in the
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absence of these to choose a lane where delays will occur, so that they will end up in a

lane with a shorter queue.

Lane allocation types: There are three types of lane-allocation process on major

roads, but only the last two are common for intersections and for driving on the left-hand

side. (For roundabouts, the first and third types usually apply (details: see Chapter 6)).

• Left-lane used by LT vehicles only. ST and RT vehicles use right-lane.

• Right-lane used by RT vehicles only. ST and LT vehicles use left-lane.

• LT vehicles use left-lane and RT vehicles use right-lane only. ST vehicles can

use both lanes.

In the first two situations, the lane-allocation process is relatively simple and

clear, but the last situation is more complicated. If the major road has a high percentage

of RT vehicles, it is necessary to specify that the right-lane is used by RT vehicles only

(the second type), so that the delay for ST vehicles can be minimised.

For the last type, ST drivers choose a lane based on their perception of the delay

expected. Normally, ST drivers would avoid using a right-lane in order to avoid delay

behind RT vehicles, particularly when the driver can see the queue forming. If there is

no queue on the right-lane or the queue is very short, then even if they are behind RT

vehicles, the delay will not be significant and they may just remain in the right-lane.

However if the queue is relatively long, ST drivers will tend to change lane as soon as

they can. Thus, the queue length on the right-lane is the main factor in deciding ST

vehicle choice of lane. Clearly, vehicles will not therefore be equally distributed between

both lanes. In our model, the lane-allocation process is modelled by considering which

lane a vehicle will end up in, rather than considering the intermediate lane-changing

process.

Lane allocation assumptions: We model the lane-allocation process in a two-

lane road, based on the following assumptions:

• All LT vehicles use the left-lane only. All RT vehicles use the right-lane

only.
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• Most straight-going vehicles will tend to use the left-lane to avoid the

possible delay on the right-lane. We assume that over 50% of the vehicles

(e.g. 60% vehicles arbitrarily) will use the left-lane unless they are RT

vehicles.

• If there is a long queue (over three vehicles) on the right-lane and no queue

on the left-lane, all ST vehicles will use the left-lane, unless there is no

vacancy on the left-lane.

• If queues on both lanes, all ST vehicles will use left-lane except the RT

vehicles, unless the queue on the left-lane is much longer than the queue on

the right-lane (e.g. over ten-vehicles longer say).

Under the above assumptions, we can observe lane-allocation patterns, which will be

used to model the 2-TWSC intersection.

Figure 4.3 A lane-allocation pattern of RTR < 0.4 and LTR ≤ 0.5 if there is no queue on the
right-lane.

Several realistic values are considered. For example, vehicles from a major road,

a right-turning rate (RTR) < 0.4 and left-turning rate (LTR) ≤ 0.5 would be considered

reasonable for a TWSC intersection in an urban area (Kyte et al. 1986). Figure 4.3 shows

a lane-allocation pattern under these considerations. Obviously when neither lane

develops a queue, flow of the road (sum flow of right-lane and left-lane) is equal to

arrival rate. Approximately 60 % of vehicles use the left-lane when arrival rate ≤ 2520

vph (vehicles per hour). Further the difference between the two lanes reaches a

maximum at the arrival rate of 2520 vph and decreases for arrival rate > 2520 vph. This

pattern is caused by the left-lane becoming saturated. Some ST vehicles may move to the
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right-lane to avoid delay. Finally, vehicle numbers in the two lanes are equal when the

arrival rate is equal to 3600 vph, i.e. the volume of vehicles arriving at the intersection-

feeder road reaches the maximum capacity of the major road.

Figure 4.4 shows another lane-allocation pattern, when we now assume that RTR

is increased and = 0.6. In this case the number of left-lane vehicles arriving constantly

increases with the arrival rate increase, but the number of right-lane arrivals gradually

reaches the maximum flow rate 1800 vph and remains at the maximum. So some RT

vehicles arrive at the road, but can not progress until the right-lane has a vacancy.

Consequently, the capacity of the road is around 3240 vph (RTR = 0.6), which is less

than the maximum flow rate (3600 vph) of a two-lane road.

Figure 4.4. A lane-allocation pattern, when the RTR =0.6.

Figure 4.3 and 4.4 only show two relatively static situations. In our model, the

lane-allocation process is a dynamic process, which means the model will check queue

lengths at each time step, and allocate newly arriving vehicles to lanes accordingly.

4.3.2 Updates for two-lane roads

A two-digit number has been used to indicate a vehicle, where the first digit

indicates the direction that the vehicle will take: value 1, 2 or 3 corresponded to LT, ST

or RT respectively. The value of the second digit corresponds to the maximum speed
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that the vehicle can use in the next time step. A “1” or “2” thus means that the maximum

number of cells which may be traversed in next time step = one or two respectively.

However, actual movement depends on number of vacant cells immediately ahead, as

does speed acquired (see Chapter 3). Speeds attend in consecutive time steps are

governed by the conditions for acceleration and deceleration processes described in

Section 3.3.1.

C t
n means the state of nth cell at time-step t. If C t

n >0, there is a vehicle in nth

cell at t’th time-step. C t
n here refers to the second digit number of C t

n,, which is the

possible speed of the vehicle. Thus, the algorithm only addresses the speed component

and the direction of the vehicle keeps unchanged. The algorithm (additional details see

Section 3.3.1) will be:

• If C tn =1 and C t(n+1)  =0, then C (t+1)
(n+1) = C tn+ 1 and C (t+1)

n = 0

• If C tn =1 and C t(n+1)  > 0, then C (t+1)
n = C tn

• If C tn =2 and C t(n+1) = C t(n+2) =0 , then C (t+1)
(n+2)  = C tn and C (t+1)

(n+1) = C (t+1)
n

=0

• If C tn =2, C t(n+1)  =0 and C t(n+2)  >0, then C (t+1)
(n+1) = C tn and C (t+1)

n =0

• If C tn =2 and C t(n+1)  >0 , then C (t+1)
n = C tn –1

4.3.3 Interaction on intersections

The MAP method used here is similar to that of the last chapter (Chapter 3), but

some further complexity is required. The shaded area (in Figure 4.2) is defined as

intersection area. Roads 1 and 3 are two-lane major roads. The interaction area contains

68 cells (Appendix C), which represent two-dimensional cellular automata in the sense

that vehicles may turn right or left on the intersection.

In the interaction area, update rules of the cellular automata are not universal, as

vehicles that come from different streams and/or move in different directions observe

different rules. Clearly the rules depend on the position and state of the given or

occupied cell.
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T1

A vehicle will be given a new number before it enters the intersection area. The

new number normally contains the following information.

• The state of a cell, i.e. if it is 0, the cell is vacant. If it non-zero, there is a vehicle

in the cell.

• The direction that the vehicle will take (LT, ST or RT)

• The number of cells which need to be traversed before vehicle is out of the

intersection area

The new number is different from the number that a vehicle acquires when it arrives at

an entry road (Section 4.3.2).

For a vehicle from a major street arriving at the interaction area (see Appendix

C), the new number will be 11,13 or 15 i.e. LT, ST or RT respectively. In other words, a

vehicle from a major road needs to travel 11,13 or 15 cells to turn left, go straight

through or turn right respectively. For a vehicle from a minor street, the new number will

be 11,21 or 23, i.e. LT, ST or RT respectively. For the number 21 and 23, the numbers

of cells that vehicles need to travel are only 11 and 13 cells respectively. The extra 10

just indicate that the vehicle from a minor-street needs to pass the central line, i.e. it is

either ST or LT.

0 0 0 0 0 0 0
0 0 0 0 b b 0 0 0 0 0 b b

0 0 0 0 0 0 0
0 a a 0 a a 0

 a b

Figure 4.5. ST vehicle from a minor street: (a) rational behaviour and
 (b) conservative behaviour

T0

Major-street

Minor-street
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T3

Figures 4.5 to 4.10 indicate the conditions, under which a target vehicle (shaded)

can move forward in the next time step, (except Figure 4.5 (d), which indicates the

requirement for this time step, otherwise it is impossible to clearly indicate the

conditions required for radical behaviour). The requirement for each shaded cell is

indicated by 0, a, b or c.  The notation of 0, a, b and c has the following meaning, and is

as for Chapter 3 (Section 3.3.5).

0 0 0
0 0 0 b b 0 0 b b

0 0 0
0 a 0

 c d

Figure 4.5. ST vehicle from a minor street: (c) urgent behaviour, and (d) radical behaviour

Figures 4.5 (a), (b) and (c) show the conditions (MAPs) required by a rational ST

vehicle T0, conservative ST vehicle T1 and urgent ST vehicle T2 from a minor street to

move forward in the next time step respectively. Figure 4.5 (d) shows the MAPs

required by a radical ST vehicle T3 from a minor street to move forward in this time step

respectively.

Comparing Figures 4.5 (a) to (d), the MAPs for 4 different categories of driver

behaviour are clearly shown. Basically, the notion behind the figures is to describe the

spatial conditions required. For conservative driver behaviour, MAP requires the largest

space as shown in Figure 4.5 (b). MAP becomes one cell smaller in each stream when

the driver behaviour category changes from conservative to rational, urgent and radical.

T2

Major-street

Minor-street
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0 0 0 b b 0 0 0 b b
0 0 0 0 0 0 0

0 a a 0 a a a

a b

Figure 4.6. RT vehicle from a minor street: (a) rational behaviour
and (b) conservative behaviour.

For Figures 4.6 - 4.10, only MAPs for rational and conservative behaviour are

shown, but the MAPs for other driver categories can be obtained in the same way as for

Figures 4.5 (c) and (d).

0 a a 0 a a a

a b
Figure 4.7. LT vehicle from a minor street: (a) rational behaviour and

(b) conservative behaviour.

Figure 4.6 (a) shows the conditions required by a rational RT vehicle T4 from a

minor street to move forward. Both RT and ST vehicles require the same conditions in

the near side two lanes (streams 2 and 4), but require different conditions for streams 1

and 3.

T4

Major-street

Minor-street

Major-street

T5

Minor-street
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Figure 4.8. The path of a RT vehicle from a major street indicated by arrow

Figure 4.7 (a) shows the conditions required by a LT vehicle T5 from a minor

street to move forward. Clearly the driver needs only to check the first lane, i.e. for

vehicles from the left.

0 c c 0 c c c
0 0 0 0 0 0 0

  A    b

Figure 4.9. RT vehicle from a major street: (a) rational behaviour and
(b) conservative behaviour.

Theoretically, a RT vehicle from the major road outer stream should not be

blocked by the RT vehicle from the opposing major road outer stream. Therefore, the

path that a right- turning vehicle uses is as shown in Figure 4.8. Also a RT vehicle

should not be blocked by any vehicle from a minor street, as it has priority over vehicles

Major-street

Minor-street

Major-street

Minor-street
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from minor streets. The conditions for a major stream vehicle to turn right are shown in

Figure 4.9.

4.4 Multilane Intersection Simulation

In this section, the capacity under different traffic conditions and operational

properties of a 2-lane TWSC intersection will be investigate.

4.4.1 Major road right–turning capacity

The capacity for RT from a major road (road 1) has been studied for two

situations. Situation 1: In the first situation, no vehicle interposes from left-lane of road

1, i.e. no vehicle comes from stream 1 (see Figure 4.2). Further the ST and LT vehicles

from road 3 are on the left-lane (stream 2) only. RT vehicles from road 3 occupy the

right-lane (stream 4) only. As no vehicle comes from stream 1 of road 1, the traffic flow

of all RT vehicles from the right-lane of road 3 (stream 4) is free flowing. Based on the

road rules, a RT vehicle from a major street should not be delayed by any vehicle from

minor streets. Thus, the RT vehicles from the right-lane of road 1 (stream 3) can be

possibly delayed only by ST and LT vehicles from road 3 (vehicles on the left-lane of

road 3).

The capacity of RT from road 1 varies from the maximum of 1800 vph to 0 vph

as the flow rate of the left-lane of road 3 changes from 0 vph to 1800 vph. The negative

relationship between flow of RT vehicles from road 1 (stream 3) and flow of vehicles

from the left-lane of road 3 is shown in Figure 4.10. Also, the sum of the two flows

declines to the minimum when both flow rates are equal, i.e. where allowing vehicles

from two conflicting direction-flows the opportunity to pass an intersection at the same

time does not result in an increase in the total number of vehicles passing the

intersection.
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Fig 4.10.The relationship between the capacity of RT from road 1

 and the flow rate of left-lane of road 3 (stream 2)

This provides useful insight on intersection operation performance, namely that

throughput of an intersection can reach the maximum when no crossing flow is allowed

(e.g. only straight vehicles from major roads). No matter how well different flows are

scheduled (e.g. using different traffic light time schemes), throughput will always be less

than the maximum once flows cross. While self-evident to some extent, this result

provides internal validation of the model form and assumptions.

Although the RT capacity of road 1 (stream 3) decreases when the arrival rate of

the left-lane of road 3 increases, the RT capacity of road 1 has not been found to vary

when the percentage of LT vehicles on the left-lane of road 3 changes. The reason for

this is that a RT vehicle from stream 3 needs to give way for both LT and ST vehicles of

stream 2.

For a single lane TWSC intersection, the RT capacity of the major street depends

on the arrival rate of the traffic from the opposing direction (see Chapter 3), while for the

2-lane TWSC intersection, the RT capacity depends only on the non-RT proportion from

the opposing direction.
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Fig 4.11.Major road RT capacity when both major roads have

the same arrival rates and turning rates

Situation 2: We assume that both major roads (roads 1 and 3) have the same

arrival rates (changing in the range of 0 to 3600 vph) and the same percentage of RT and

ST rate (0.4:0.6). The flows of ST (and LT) vehicles from major street (streams 1 and 2)

are not affected by RT vehicles from road 1 and 3 (streams 3 and 4). However, flows of

streams 3 and 4 decrease dramatically when the arrival rates of roads 1 and 3 are above

1800vph. The relationship is shown in Fig 4.11, with the maximum flow of each road

around 1800 vph.

4.4.2 Minor road left-turning capacity

Assuming that all vehicles from the minor street (road 4) are LT vehicles, the

capacity of LT will be examined in this section. The interaction between the vehicles

from road 4 (stream 5) and the left-lane of road 3 (stream 2) is similar to the interaction

between the RT vehicles of road 1 (stream 3) and left-lane of road 3 (stream 2) (studied

in section 4.4.1). The only difference is that vehicles from road 4 (stream 5) need to stop

at the stop-line for at least 2 seconds before progressing.

The relationship between flow of road 4 (stream 5) and flow of the left-lane of

road 3 (stream 2) is shown in Figure 4.12. The maximum capacity for LT from road 4 is

less than 900 vph, which is only half of the maximum capacity of RT of road 1. The

SSDT has a big impact on the capacity of the minor street (also see Section 4.4.5). In
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Figure 4.12, there is one line (sum of stream 2 and 5) to indicate the sum of flow of the

left-lane of road 3 and flow of road 4. The right-lane of road 3 (stream 4) is not included,

as the LT vehicles from road 4 do not interact with it.

Figure 4.12. LT capacity for minor street

4.4.3 Minor road right-turning and straight-through capacity

In this section, the ability to RT and ST for vehicles from the minor street (road

4) is tested. Firstly, all vehicles from road 4 are assumed to be all RT vehicles. In order

to show the relationship between the RT capacity of the minor street, the arrival rates of

major roads (road 1 and 3) are assumed to be equal and both have STR: RTR = 0.6:0.4

(no LT vehicle).

Fig 4.13 Minor street RT capacity
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Figure 4.13 indicates that the RT capacity of the minor street varies with the

arrival rates of roads 1 and 3. When arrival rates of roads 1 and 3 are greater than

1440vph, the RT capacity of road 4 is approximately zero, i.e. it is nearly impossible for

a vehicle from minor street to move. Therefore, the RT movement from the minor street

is effectively blocked even if the flow rates of the major streets are as low as 1440 vph.

Secondly, all such vehicles (from road 4) are assumed to be ST. Arrival rates of

roads 1 and 3 are equal and both have STR: RTR = 0.6:0.4 (no left-turning vehicle), so

that the relationship between arrival rates of major roads and ST capacity of the minor

street can be assessed.

Figure 4.14 shows the capacity of ST vehicles from the minor street. Because ST

vehicles from the minor streets require all four major streams to meet specific conditions

(see Figure 4.5), whereas RT vehicles requires conditions only on three major streams

(see Figure 4.6), the capacity of ST is further reduced when arrival rates of the major

streams are the same.  Again, the RT movement from the minor street is effectively

blocked even if the arrival rates of major streets are as low as 1440 vph.

Figure 4.14. Minor street ST capacity

4.4.4 Turning rates and minor road capacity

In order to investigate the relationship between turning rates and minor road

capacity, we assume that arrival rates and turning rates of the major roads are fixed.
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Turning-rats of major roads both have STR: RTR = 0.6:0.4 (no LT vehicle). STR of

minor roads (roads 2 and 4) are assumed to be equal and taken to be 0.2.

Table 4.1: Turning rates vs. minor rod capacity (vph)
Flow rates of major roads ( roads 1 and 3) (vph)LTR: RTR of minor roads

0 360 720 1080

0.2:0.6 666 522 340 162

0.4:0.4 753 585 408 203

0.6:0.2 858 689 503 270

In Table 4.1, flow rates of both major roads increase from 0 to 1080 vph, while

LTR: RTR of minor roads change from 0.2:0.6, to 0.4: 0.4 and 0.6:0.2. The results

indicate that capacity decreases when flow rates of major roads increase, for all flow

rates and turning rates considered. Increase in LTR on minor roads obviously leads to

capacity increase as we can see in each column.

4.4.5 The effects of stop-sign-delay-time (SSDT)

Stopping at a stop sign is a legal requirement, as well as good driving practice.

The stop-sign-delay-time is thus the minimum delay that a vehicle may expect in order

to follow road rules and make sure that it is safe to pass the stop line.  Different drivers

take different amounts of time to check all conflicting streams, to stop and then progress,

so that a distribution for SSDT is realistic. Furthermore, individual driver SSDT is also

likely to vary with road, traffic and weather conditions.

Figure 4.15. The effects of SSDT
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Clearly SSTD also depends on the direction that the vehicle will take, as the

numbers of streams to negotiate varies with different directions of movement. In this

chapter, the SSDTs have been arbitrarily set as 2, 4 and 4 time-steps (seconds) for LT,

ST and RT, but we have considered some modification in this section, for the following

reasons. Original values are based on the same notion of SSDT as in Section 3.3.3,

where SSDTs are assumed to be 2, 3 and 3 seconds for LT, ST and RT respectively for

single-lane intersections. Comparing with single-lane intersections, the number of

streams for RT and ST to negotiate increase in two-lane intersections, so that we assume

that SSDT also increases one second. In this section, we observe the effect of changing

SSDT on the capacity, (using the SSDT of LT vehicles from minor streets as an

example).

From Figure 4.15, the shorter the SSDT, the higher the capacity of road 4. This

effect decreases, however, as the arrival rate of road 3 increases, since vehicles on road 4

need to wait longer for a sufficient space to move. Thus the delay due to the stop sign

becomes less significant. Similar results are observed for other directions of movements.

4.4.6 Overall operation of 2-lane TWSC intersection

Figure 4.16. Vehicles from all directions. Flows change with the arrival rates of the major roads.

In the previous sections, several isolated scenarios have been considered. In this

section, a somewhat more realistic scenario is studied. Vehicles are assumed to converge

from all directions. Arrival rates of roads 1 and 3 are equal. Arrival rate of roads 2 and 4
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are set to the maximum flow rate (1800 vph) that the single-lane road can manage. On

both major roads, LTR: STR: RTR = 0.2:0.6:0.2.  On both minor roads, LTR: STR: RTR

= 0.4:0.2:0.4.

In Figure 4.16, the flow of minor roads (roads 2 and 4) are close to zero once

arrival rates of roads 1 and 3 ≥ 1440 vph. When arrival rates of roads 1 and 3 are larger

than 1440 vph, the flow rates of streams 1 and 2 increase drastically. At the same time,

flow rates of streams 3 and 5 decrease, when arrival rates of major roads increase. These

results are caused by the number of ST vehicles use the left-lane increase, as queue

formation occur on the right-lanes of major roads when the flow rates are larger than

1440 vph.

Comparing to Figure 3.7, the two-lane TWSC intersection does improve the

performance of the single-lane intersection in the sense of the mobility of minor road

vehicles. However, the entry capacity is still very low when arrival rates of the major

roads > 1080 vph. Also the RT capacity of the major road streams is approximately zero

when arrival rates of major roads ≥ 2160 vph, i.e. the intersection actually only allow ST

and LT vehicles to pass.

The throughput of 2-TWSC intersection reaches a maximum 3600vph (= the

maximum of stream 1 + the maximum of stream 3) when ST and LT vehicles arrive at

major street reach 1800 vph (= the maximum capacity of left-lane) on each major road.

4.4.7 Queue formation on major and minor roads

Under the more realistic conditions that vehicles come from all roads, LTR:

STR: RTR = 0.2:0.6:0.2 on both major roads, and LTR: STR: RTR = 0.4:0.6:0.4 on both

minor roads, the following is observed. For arrival rates of major roads taken to be 720

vph, the capacities of minor roads (roads 2 and 4) are around 448 vph. When the arrival

rate of road 4 is slightly smaller (e.g. 432 vph) than the capacity, queue-length over a

three-hour period can be observed to follow typical behaviour as shown in Figure 4.17.

The queue-length can be in a very wide range (e.g. from 5 to 50 cells).
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Figure 4.17. Queue-length of road 4

The reason for this is that the number of arrival vehicles is smaller than the

capacity, so that the queue may form only temporarily due to the random process of

arrival and MAP availability. Similar results are also found in short running time

(e.g.7200 seconds) when arrival rate is slightly larger than the capacity (e.g. 464 vph),

but in long running time (e.g. over 2 hours) the queue-length will eventually reach the

maximum length of the road. Again, the reason for this fluctuation of queue length is due

to the random process of arrival and MAP availability. However, because the number of

arrival vehicles is greater than the capacity, the queue will eventually reach the

maximum road length situation.

When a wide range of arrival rates is studied, the queue formation on major (RT

lanes) or minor roads can normally be summarised as follows:

• If arrival rate is much larger than (>>) the capacity, queue-length increases

drastically and rapidly reaches the maximum length of the road.

• If the arrival rate is much less than (<<) the capacity, queuing is rare.

• If the arrival rate = the capacity, the queue will reach the maximum length

of road sooner or later.

• If the arrival rate is slightly lower than the maximum capacity, queue-length

will fluctuate from 0 to some length. It may reach the maximum length of the

road if the arrival rate is relatively close to the capacity, but usually only

after a relatively long period of time.
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4.4.8 Driver behaviour

We now consider the effect of driver behaviour for vehicles coming from all

directions. Arrival rates of roads 1 and 3 are taken to be equal, while arrival rate of roads

2 and 4 are taken to be equal to the maximum flow rate (1800 vph) that the single-lane

road can manage. On both major roads, LTR: STR: RTR = 0.2:0.6:0.2. On both minor

roads, LTR: STR: RTR = 0.4:0.6:0.4.

The following deterministic situation is considered: we assume that all drivers

are in one of the following four categories: conservative, rational, urgent or radical. This

will result in four different road capacities for one set of arrival rates of major roads. If

the arrival rates of major roads change, the four capacities will change as a consequence.

If arrival rates of major roads = 0, it is obviously that the road 4 capacities of the

four categories are equal (see the second column of Table 4.2), as no vehicle is on the

major road and the vehicles from road 4 do not need to give way. When the arrival rates

of the major roads > 0, for the first three categories with the same arrival rates, the

capacities will increase pro rata, i.e. capacity of conservative < capacity of rational

<capacity of urgent. Clearly the more impatient drivers will exploit the more

opportunities.

However, the most extreme case is that of the radical driver. The capacity of

road 4 is highest when the arrival rates of major roads (roads 1 and 3) are 360 vph, but

radical driver behaviour can causes gridlock on the intersection. If all drivers from minor

roads seize any space onto the intersection (not observing give-way rules), blockage of

vehicles from major roads will occur. Particularly, when the arrival rates of major roads

are high, the vehicles from major roads also block the vehicles from minor roads.

Gridlock is unavoidable.

Our model illustrates possible causes of gridlock. We find that occurrence of

gridlock may need two conditions: (i) traffic flow on major roads heavy and (ii) drivers

on minor roads failing to observe the rules.
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Table 4.2. Entry capacity of road 4 (vph)

Arrival rate of road 1 (and 3)Driver
Behaviour 0 360 720 1080 1440 1800 2160
Conservative 750 560 47 1 0 0 0
Rational 753 574 448 269 78 0 0
Urgent 749 660 552 399 193 7 0
Radical 748 698 Gridlock Gridlock gridlock gridlock gridlock

Clearly, a comprehensive sensitivity analysis is needed to determine what

combinations can trigger gridlock. Initial analysis has shown that for a combination of

driver behaviour with high probability of radical drivers gridlock may occur very

quickly (within one hour), or take a relatively long time (e.g. over 5 hours. This is

estimated, as the model can not show exactly when gridlock exactly occurs. However,

the time can be estimated based on how many vehicles passed through, over 10 hours

say) for the same flow rate of major roads. Consequently, the capacity can be varied in a

wide range depending on when gridlock occurs. When gridlock does not occur, an

approximate linear relationship, which is similar to Section 3.4.4, is observed between

the capacities and driver behaviour distribution. However, further sensitivity analysis is

also needed in order to investigate the effect of combination of different types of driver

behaviour, which has not as yet been done in this research.

In the real world, drivers stopped on the intersection can co-operate and free

gridlock by self-organisation (not by road rules). Our model does not currently include

the process of releasing gridlock. It can, however, be incorporated into the present model

in the future. One possible way to release gridlock is to force one vehicle to change

direction (e.g. a straight-through or right-turning vehicle is forced to turn left) and

release one cell on the intersection. It nevertheless typically takes a very long time for

traffic flow to recover, so that estimates of time needed to release gridlock can be very

variable.
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4.5 Signalised Intersections

4.5.1 Background

Traffic light controlled intersections are an alternative to TWSC intersections. In

a city, traffic lights have been considered as the main method of traffic control, despite

many other methods, such as signs (free-standing or on the road surface), radio

broadcasting and manual control-points, etc.

Traffic light control systems have developed from fixed time control systems

into real-time adaptive control systems. State-of-the-art traffic signal-control systems are

capable of dynamically modifying signal timings in response to changing traffic demand

(Mirchandani and Head 2001, Brockfeld, et al. 2002). Two centralised adaptive control

systems (SCATS and SCOOT) are used in Ireland. SCATS (Sydney Coordinated

Adaptive Traffic System) is used in Dublin City, while SCOOT (Split, Cycle, Offset

Optimisation Technique) is currently used in Cork (Traffic Information 2003).

There are some common methods used in traffic light design at the network

level, such as traffic light co-ordination, interconnection and synchronisation (Traffic

Control Systems Handbook 1996, Office of Technology Applications (OTA) 2001).

Traffic lights in the city are normally closely spaced, typically < 1km apart. They are

often co-ordinated in order to minimise delays and to move large volumes or "platoons"

of traffic in one movement along the main road (Seattle Department of Transportation

2002). However this co-ordination is not easy to achieve due to the differences in

distance between traffic lights, volume of traffic, speeds, and amounts of green time

required for each intersection. Consequently, it is very difficult to obtain perfect co-

ordination for all directions.

Co-ordination is achieved by connecting all traffic lights to form a

communication network (Office of Technology Applications (OTA) 2001).

Interconnection allows traffic lights to share traffic control information and to be



77

simultaneously programmed and consistently work together. Once co-ordination is

established the traffic lights can be synchronised.

In order to establish a common green and red light cycle length along a major

road, traffic light synchronisation is used to activate signals together (Seattle Department

of Transportation 2002). All intersections in the co-ordinated system have the same

cycle length. Traffic lights may also be synchronised over the entire traffic control

system (whole urban network), and, it is believed, permit more efficient mobility

(Leonard and Rodegerdts 1998).

Furthermore, in order to achieve better performance over whole networks, the

following facilities are normally also put into place: Traffic Detection Devices,

Intelligent Transportation Systems (ITS) and Traffic Management Centre (details see

Seattle Department of Transportation 2002).

In order to compare 2-lane traffic light controlled intersections with the 2-lane

TWSC intersections, we primarily focus on modelling with the traffic light controlled

intersection in Section 4.5. Although modelling signalised controlled traffic flow is not

the main task of our research, it can help us to a further understanding of unsignalised

traffic flow and especially can offer insight on aspects of traffic control at local level. In

particular, we are interested in the comparison between the function of controlled and

uncontrolled intersections and the effect on flow dynamics.

Traffic light control is based on understanding how the cycle of traffic lights

affect the mobility of traffic flow, i.e. the relationship between the volume of vehicles

and time-cycle setting. This is usually an inexact task, as road users know. We wish to

explore the nature of the signalised intersection improvement and /or dis-improvement

on mobility of traffic flow.

In an intersection, the duration of green and red lights for each direction is

different and depends on the signal timing policies (including minimizing delay,

minimizing stops, minimizing fuel consumption, maximizing coordination band width, a

“baseline” policy) as well as the traffic flow patterns, (Leonard and Rodegerdts 1998).
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When traffic loads are relatively balanced in each direction, the duration of “reds" and

"greens" are balanced in all directions. When the traffic flow is heavier in one direction,

the traffic lights are co-ordinated to favour the highest volume of vehicles. Many other

policies may of course be considered, such as a favoured policy for public transportation.

Settings may also change at different times of day. In the morning e.g. traffic flow is

relatively heavy towards the central business district (CBD) in a city, such as Dublin,

while the situation is reversed in the evening. The settings need to reflect the differences.

In our model the duration of yellow (amber) light is three seconds. In the U.K.

and Ireland, the duration of yellow light is legally required to be three seconds' duration.

However, the duration of yellow (amber) in U.S. is 3-6 seconds depending on speed

limits according to the new version of the Manual on Uniform Traffic Control Devices

or MUTCD (Federal Highway Admission, U.S. Department of Transportation)

recommendation. An historical review of the investigation and practice with respect to

the United States process of selecting an interval of yellow light is presented by Liu et al.

(1996). Differences stem from regulations of how yellow lights are to be used. In the

U.S., drivers can drive onto the intersection when lights are yellow, if they can clear the

intersection before the light turns to red. In Ireland and the U.K., drivers should stop on

yellow if they can stop behind the stop line safely.

The above review is not a comprehensive review on traffic-light controlled

intersection. It would be needed if our research was on traffic light timing strategies or

optimising traffic lights. As our research is primarily on unsignalised traffic, we present

here just a preliminary examination of signalised control. The purpose is to flag some of

the wider issues, (Hounsell and Salter 1996).

4.5.2 Methodology

We use our basic CA model and enhance this to incorporate traffic light

conditions. Vehicles can not enter the intersection unless the traffic light is green in their

direction. The intersection is an area of 4 x 4 (cells) square, so that a ST or RT vehicle

on the intersection can leave the intersection in 3 seconds if traffic lights turn to yellow.
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In other words, the area is exactly defined to reflect complete movement for any vehicle

that enters the intersection before the lights change to yellow and before the next change.

Time settings and throughput: On each entrance road of the intersection, three

traffic lights are employed, LT, ST and RT, and all lights have three colours (the RT or

LT lights may be just an arrow). In reality of course, there may only be lights for RT and

ST. Some intersections do not control LT vehicles (i.e. LT controlled by priority rules),

so that more LT vehicles may pass the intersection compared to using LT lights (LT

vehicles may be required to give-way to pedestrians).

                 Road 2

Stream 5

Stream 1

Stream 3

Stream 4
Road 1

Stream 2

Road 3

Stream 6

                  Road 4

Figure 4.18 An intersection with traffic lights

Theoretically, there is no interaction between different directions of the traffic

flow, as traffic lights are designed to avoid conflict between different directions.

Therefore, the capacities are directly related to the traffic light settings. We can assume

that the cycle is around 2 minutes, (cycles generally range from about one minute to two

minutes, where a 2-minute cycle is slightly longer than normal), in order to study the

effects of different green and red settings. At a simple intersection, a cycle might include

48 seconds of green light for traffic on major roads (1 or 3), followed by 3 seconds of

yellow light and 61 seconds of red light. One time-setting example can be seen in

Appendix B.

Minor-street

Major-street

Traffic Lights of
Minor-street

Traffic Lights of Minor-
street ( Road 2)

Traffic Lights of Major-
street (Road 1)
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Table 4.3. The intervals of green lights (in seconds) vs. throughputs
Major street 66 63 60 57 54 51 48 45 42 39 36 33

Minor street 3 6 9 12 15 18 21 24 27 30 33 36

Throughput (vph) 3444 3330 3300 3199 3192 3074 3051 2953 2919 2814 2795 2685

During the 2 minutes, the intervals of green light for a major and minor road are

listed in Table 4.3. The relationship between different settings and throughputs is also

shown. Basically, throughput of the intersection increases as the green light periods

increase for major roads. The reason for this is that the green lights for major roads allow

traffic flow of two lanes to pass through the intersection at the same time, whereas green

lights for minor roads only allow single lane traffic flow to pass through. However, this

increase in throughput is achieved by sacrificing the mobility of minor roads.

4.5.3 Signalised Intersection Simulation

In Figure 4.19, flows of left-lane (stream 1) and right-lane (stream 3) of the

major road are shown. The flows are approximately linearly decreasing as the duration

of green lights for minor road increase. Furthermore, the flow of the minor road (stream

6) increases linearly.

As long as the duration of green lights for the minor road >0, the maximum

throughput of 2-TLC intersection < 3500 vph, whereas throughput for 2-TWSC

intersection is around 3600 vph (Section 4.4.6). Traffic lights clearly cause throughput

decrease for two reasons, i.e.

• The yellow light period, for which no vehicle moves onto the intersection

• The green lights not being fully utilised, as there are too few vehicles in the

permitted direction. This is the reason why adaptive controls systems are the

focus of recent efforts on control.

Comparing Figures 4.16 and 4.19 (the two traffic configurations-signalised and

unsignalised), we can see that traffic lights increase throughput when the same number

of vehicles from the minor roads are able to pass through the intersection. For the TWSC

intersection, when the arrival rates of major roads ≥ 1440 vph, the entry capacities of the

minor roads are nearly zero. For signalised intersections, when similar numbers of
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vehicles, ~1440 vph pass through the intersection from each major road, the capacities of

minor roads are around 195 vph.

Figure 4.19. Flow of different streams varies with the duration of green light of minor-street

With the same capacity of the minor-road, signalised intersections have better

performance compared to TWSC intersections, providing that there are enough vehicles

on all roads to utilise the green light periods. Obviously, if there are not enough vehicles

to fully utilise the green light periods on one or more roads, traffic lights can not enhance

the intersection performance. In this case, a TWSC intersection may have better

performance than a traffic-light controlled intersection. Clearly a signalised intersection

can give a chance to streams that have been blocked under the priority rules, but can also

block vehicles on the major streams when there is no need to do so (for example, when

there are not enough vehicles from the minor roads). Therefore, whether an intersection

should be controlled depends on traffic situations.

4.6 Summary

In this chapter, we proposed a new model to study traffic flow at a two-lane two-

way stop-controlled (2-TWSC) intersection. A model of dynamic lane-allocation process

has also been developed. The vehicle allocation process depends on the direction of the

vehicle and queue length on each lane of the major road. An algorithm to update position

on a two-lane road was built, in which a vehicle can have multiple speeds and retain its

destination attributes.
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Interaction on the intersection has been modelled using the MAP method, but

further complexity is required. Using the MAP approach, capacities have been obtained

for different road manoeuvres.

The two-lane TWSC intersection does improve the performance of single-lane

intersection in the sense of mobility on the minor roads. However, the capacity of the

minor roads is close to zero when arrival rates of the major roads ≥ 1440 vph. Also the

RT capacity of the major street is approximately zero when arrival rates on the major

roads ≥ 2160 vph.

The effects of SSDT also are analysed. Not surprisingly, the shorter the SSDT,

the higher the capacity of the minor road. This effect decreases, however, as the arrival

rates of the major road increase.

When a wide range of arrival rates are studied, the queue formation on major

(RT only) or minor streets can be summarised as in Section 4.4.7. The key is clearly that

if arrival rate ≥ the capacity, queue-length will reaches the maximum length of the road.

Four categories (conservative, rational, urgent and radical) of driver behaviour

have also been studied and significantly affect results. We find that the occurrence of

gridlock requires that that major road traffic is heavy and that drivers on the minor roads

“bend” the rules.

Finally, a traffic flow model at a signalised intersection has been built in order to

compare with 2-TWSC intersection. With different green light settings for the major and

minor roads, different flow patterns were observed. Providing that there are enough

vehicles on all roads to utilise the green light periods, and for the same minor-road

capacity, traffic lights are found to improve overall performance measured in

throughput. Signalised intersections facilitate cross flow in that they are able to provide

the chance for the streams that are blocked under the priority rules, but at the expense of

blocking vehicles on the major streams.
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Chapter 5

Single-lane Roundabouts

5.1 Introduction

Roundabouts are an important part of urban networks, with some controlled by

traffic lights and some controlled by rules of the road. Roundabout operation is also

governed by the offside-priority rule, by which a vehicle entering gives way to one

already on the roundabout. Roundabouts connect urban (and inter-urban) streets, with

some having four or more entrance/exit points.

The main feature of roundabouts is that they transfer a complicated intersection

into several simple T-intersections and consequently improve road safety. According to

the Norwegian Road Safety Handbook (Elvik et al. 1997, Hyden et al. 2000), there are

five main advantages in using roundabouts to improve traffic safety:

• The number of conflict points in the traffic flow is decreased;

• The “Give way rules” are imposed;

• All traffic inside the roundabout comes from one direction;

• Right turns for opposing traffic are excluded (for left-side driving);

• The speed is reduced.

Studies also indicate that acceptable safety levels can be fully reached only if

vehicle speed is lower than approximately 40 km/h (DIB 1998).

The mobility of vehicles at roundabouts is an important issue related to the

global mobility and capacity of urban networks. One experimental study (Hyden et al.

2000) has indicated that time taken to pass the network point (i) increases when

roundabouts are used to replace unsignalised intersections and (ii) decreases when they

replace signalised intersections. In the light of our discussion on the findings of the

previous chapter, this is an issue of particular interest. Consequently, the focus of the
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work presented in this and the following chapter related to the theoretical analysis of

mobility and time-delay in different geometrical road features, specifically symmetric

and asymmetric roundabouts.

Time taken at intersections and roundabouts contributes significantly to travel

time and route choices in urban networks. Road users at roundabouts also interact with

each other, and time delays are different for different individuals. Even at the aggregate

level, network flow patterns depend on delays at intersections and roundabouts. In

particular, for urban networks under saturated conditions, a large part of total travel time

is due to queueing delays (Queloz 1995).

In the following, a cellular automata (CA) model is used to simulate a single-

lane roundabout operating under the offside-priority rule. Three aspects of roundabout

performance in particular have been studied. The first looks at overall throughput, (the

number of vehicles, which navigate the roundabout in a given time), for different

geometries, arrival and turning rates. The second investigates changes in queue-length,

delay-time and vehicle density for an individual road. The third considers the impact of

driver behaviour on throughput and the performance of the roundabout.

5.2 Background

Several attempts to simulate roundabout operations exist, mostly based on entry

capacity models. The entry capacity (capacity) of a roundabout is the number of

vehicles pass through an entrance per unit of time (normally an hour—vph), which is

different from throughput. Throughput is the number of vehicles that pass through the

roundabout in a given time. Hagring (1996) refers to ten different models, which can

generally be classified into two groups. The first consists of linear regression models

developed by empirical methods. The second group that of gap-acceptance models

developed using analytical methods has been discussed earlier in relation to intersection

movements (Chapter 3). Gap-acceptance models have also been used, not only to model

the entry capacity but also in studying the queue-length and delays at a roundabout.
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Liner regression models use linear approximations to determine the relationship

between entry capacity and circulating flow (the total volume in a given period of time

on the roundabout immediately prior to an entrance) for a single-lane roundabout,

(Kimber 1980, Guichet 1997 and Brilon et al.1997). Kimber’s equation (see Equation

5.1 at the end of this section) assumes that capacity has no relationship with the size of

the central island (Chin 1983). Therefore, Kimber’s equation could be used for both

large and small roundabouts of any shape.

Kimber’s model has been used both in the software RODEL (developed for the

evaluation and design of roundabouts and ROundabout DELay) and ARCADY

(Assessment of Roundabout CApacity and DelaY) (Semmens 1985 and Brown 1995). It

is widely used in the UK and Germany. The latest research on roundabout entry capacity

in Germany shows that a linear rather than an exponential function (developed by

Siegloch 1973) is also in better agreement with the observed data (Brilon et al. 1997).

Empirical capacity models have some advantages, one of which is clearly that

there is no need to describe or to understand driver behaviour, as the data are from the

real world, which has already taken many such factors that influence capacity into

account. There are some obvious drawbacks, e.g. the significant amount of data that has

to be collected to ensure reliability of results. Entry data have to be collected at

saturation (or at capacity) level.

.

                                    gap

Priority stream

Figure 5.1: Illustration of two-stream intersection
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The gap-acceptance model (shown in Figure 5.1) was developed originally for

“priority rule” intersection (i.e. without traffic lights) and was based on Tanner’s

capacity model (1962, see Equation 5.2 at the end of this section). The basic assumption

of this model is that the driver will enter the intersection when a safe opportunity or

“gap” in the traffic presents itself; (for further discussion, see Chapter 3).

Troutbeck (1988 and 1991) proposed a two-stage theory to modified Tanner’s

model. He indicated that assumptions that T and T0 were constant (and that this headway

distribution of priority stream was random) were not realistic. He believed that vehicles

travel in two stages, the “bunched vehicle” stage and free vehicle stage. In the bunched

vehicle stage, vehicles are “following” leading-vehicles. In the free vehicle stage,

however, these vehicles travel without interaction with the vehicle ahead. Taekratok

(1998) modified Tanner’s equation using Cowan’s M3 headway distribution model

(Cowan 1975 and Section 3.2).

Troutbeck (1990) conducted a study of driver interactions at roundabouts in

Australia. His study supports his assumption that traffic streams influence each other.

Two critical points are:

• Priority sharing occurs at the entrance of the roundabout. Circulating

vehicles may give way to entering vehicles deliberately. This appeared to

lead both to a reduced critical gap and average follow-on time for entering

vehicles.

• In general, entering vehicles give way to all circulating vehicles. Entering

drivers were often unsure whether a circulating driver on their left intended

to leave at the exit before theirs or travel across their paths.

Additionally, Taekratok’s model (Taekratok 1998) has been adjusted based on

data observed in Australia and software developed as aaSIDRA (aaTraffic Signalised &

unsignalised Intersection Design and Research Aid, Akcelik 1997 and 1998). The gap-

acceptance model is also extensively used in the USA, recent examples include (Kyte

1997).
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In brief, the models revised above have the form:

Kimber’s capacity model is:

Qe =F-fc Qc (5.1)

where Qe =entering capacity (vph).

Qc = circulating flow (vph), (flow coming from the left).

F, fc parameters defined by roundabout geometry.

Tanner’s equation is

Qe = Qc (1- ∆ Qc) e Qc (T- ∆) /(1- e Qc T  )                                 (5.2)

where  Qe = Entering capacity (veh/sec)

Qc = Circulating flow (veh/sec)

T = Critical gap

T0 = Follow-up time

∆ = The minimum headway

The modified gap-acceptance model is

Qe = 3600Qc (1- θ ) e -λ (T- ∆) /(1- e -λ T0  )                           (5.3)

where

Qe = Entering Capacity (veh/h)

Qc = Circulating Flow (veh/sec)

θ = The proportion of bunched vehicles

∆ = The minimum headway in the circulating streams, and these are 1 second

for multilane and 2 second for single lane

T = The critical gap

To = The follow-up time

λ = Decay parameters =(1- θ ) Qc /(1- ∆ Qc )
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These essentially represent hierarchical model development, with complexly

increasing. We now discuss our approach to modelling roundabout manoeuvres, which

relies on multi-valued space criteria (as described in MAP models in previous chapters).

5.3 Methodology

We use a CA ring to represent a single-lane roundabout, stimulated by the work

of Chopard (1998), who used this idea to simulate intersections without traffic lights.

We develop a multi-state CA ring in order to characterise vehicle destinations.

The state in each cell has three meanings. If zero (C = 0), this means that there is no

vehicle in this cell. If larger than zero (C > 0), it means that there is a vehicle in this cell.

The actual value indicates how many cells the car needs to traverse to arrive at the

destined exit. This approach extends to multilane roundabouts in Chapter 6.

Figure 5.2: A single-lane roundabout: flow pattern

The number of cells in the ring is determined by the real dimension of the

roundabout, which, if known, gives the number of cells in each ring. The overall
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requirement for the model (or program) is obviously to be flexible enough to allow size

to be varied.

A typical roundabout is shown in Figure 5.2. Four roads connect to the

roundabout, where each road has two directions for traffic flow. The roundabout has four

single-lane entrances/exits for this example. Movement for each lane is handled by one

three-speed deterministic CA model (as in Chapter 3). The roundabout is represented

also by a multi-state CA ring. The roundabout system contains eight three-speed

deterministic CA and one multi-state CA ring shown in Figure 5.3.

Figure 5. 3: A road and its entrance to a roundabout

5.3.1 Driver behaviour at entrance

Under the offside-priority rule, the vehicles waiting at a roundabout entrance

need to give way to the vehicles on the roundabout. Drivers need to determine how

much space on the roundabout is sufficient for them to drive to the required position and

to gain enough speed so that their car will not obstruct an oncoming vehicle.

Determination of the opportunity to drive onto the roundabout is a complicated decision-

making process.

Factors that influence the driver’s decision include driver skills, the weather, the

car performance, motivation of travel etc and may vary for each individual driver.

However the important common factor is the space available on the roundabout.

Road Roundabout
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In this model, we use the space available on a roundabout as the only parameter

to describe driver behaviour. Similar to intersection models, the optimum condition for

a vehicle to move onto the roundabout is that this space is just enough for the vehicle to

enter the roundabout without interrupting an oncoming vehicle. However, an individual

driver’s own space criterion of entry to a roundabout may differ from the optimum

condition. Thus, driver behaviour can be categorised as conservative, rational, urgent

and radical and considered in addition to space conditions.

Rational decision-making is that which is based on the optimum condition

being met, whereas conservative behaviour implies delayed entry, even when the space

available on a roundabout is larger than optimum. Urgent behaviour is a rushed entry,

when the space is just smaller than the optimum. The action of an urgent driver will

slightly block the oncoming vehicle (to pause for one time-step), but the entry vehicle

itself can move on smoothly. By contrast, radical behaviour occurs when the driver

will squeeze onto the roundabout, even when the space is far less than optimum. The

result is that the entering vehicle not only blocks the oncoming vehicle (causing a pause

for two time-steps), but also a further pause for one time-step (to avoid running into the

vehicle in front).

Both urgent and radical behaviour may result in blocking an oncoming car,

which should not happen according to the offside-priority rule. Consequently, radical

behaviour may lead to congestion and a breakdown of free flow.

The distribution of driver behaviour is therefore expressed in four probabilities

as previous chapters (Chapters 3 and 4), i.e. probability of conservative entry (Pco),

probability of rational (Pra), probability of urgent (Pur) and probability of radical (Prad )

behaviours (with sum =1).
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North

5.3.2 Entering the Roundabout

The optimum condition for a vehicle to drive onto a roundabout is that there are

three sequential vacant cells available on the roundabout. If the condition is met, we can

put an extra vehicle between two vehicles without causing interruption of flow.

A driver observing the optimum condition is behaving rationally. A driver who

takes four vacant cells or more is favouring conservative behaviour. By contrast, moving

onto the roundabout when only one or two cells are vacant displays radical or urgent

behaviour respectively.

Simulation conditions for rational behaviour are as follows:

• Find the number of vacant cells of the CA ring, which is to the right of an

entrance.

• If the number of free cells ≥ 3, the vehicle waiting at the entrance may drive

onto the roundabout.

• If there are two vacant cells in three sequential cells and the third one is

occupied by a vehicle that will exit from the roundabout before this entrance,

the waiting vehicle can also enter roundabout.

Figure 5.4: An illustration of driver behaviour
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Figure 5.4 illustrates four different behaviours. The dark vehicle from north

is entering the roundabout with rational behaviour, as there are three vacant cells

between two light colour vehicles. The vehicle from the east is entering the

roundabout with conservative behaviour, as there are four vacant cells between two

light colour vehicles. By contrast, the vehicles from the west and south are entering

the roundabout with urgent and radical behaviour respectively.

5.3.3 Predetermined exit before entering the roundabout

Drivers clearly have their own destination in mind, so that they would make

decisions on which exit is appropriate before entering. Characterising a given exit for

each vehicle before entry is clearly more realistic, than assuming that such a decision is

made once entry is effected.

The approach used is to characterise each car by randomly giving each car a

different number. The number is equal to the number of the cells that a car needs to pass

to arrive at its destination exit. For instance, a four-road single-lane roundabout CA

model has in total (a+b+c+d) cells, where a, b, c and d are the cells between arms 1 and

2, 2 and 3, 3 and 4, 4 and 1 respectively. The vehicles entering from arm 1 are signed a,

(a+b), (a+b+c) and (a+b+c+d) randomly as shown in Table 1. The four numbers

represent the number of cells to pass prior to exiting at the respective points. If the exit

distribution of vehicles entering is known, i.e. that LT, ST, RT and back exit vehicles are

m1%, n1%, o1% and p1% respectively, we then randomly assign m1% of the vehicles with

a, n1% with (a+b), o1% with (a+b+c) and p1% with (a+b+c+d) as shown in Table 5.1.

Also, clearly

mi%  + ni%  + oi%  + pi%=100%          ( i=1, 2, 3, 4 )                  (5.4)

Table 5.1: The numbers that will be assigned to the vehicles

Arm1 Arm2 Arm3 Arm4
• m1%   a;
• n1%   (a+b);
• o1%   (a+b+c)
• p1%   (a+b+c+d)

• m2%   b;
• n2%   (b+c);
• o2%   (b+c+d)
• p2%   (a+b+c+d)

• m3%  c;
• n3%  (c+d);
• o3%  (c+d+a);
• p3%   (a+b+c+d)

• m4%    d;
• n4%    (d+a);
• o4%    (d+a+b);
• p4%    (a+b+c+d)
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5.3.4 Up-date rules on the roundabout

The update rule for the roundabout is as follows. If the state in cell n at time-

step t is larger than one (C t
n >1), which shows that there is a vehicle in cell n, the state

(Ct
(n+1)) in cell (n+1) in front must be checked to see if it is vacant. If it is (C t

(n+1) =0),

the number will decrease by one when it moves forward into the cell (n+1) in front

(C(t+1)
n+1 = C t

n –1) and cell n will become zero (C (t+1)
n =0 ) in  time step (t+1)

(Expression 5.5). If the state in cell (n+1) is not zero (C t
(n+1) ≥1), the number in cell n

(C(t+1)
n ) will be unchanged (C (t+1)

n = C t
n) (Expression 5.6). As the car moves, its

number finally becomes equal to one (C t
n =1), indicating that the car will leave the

roundabout in the next time step if the exit is free, and there will be no car in this cell in

the next time step (C(t+1)
n =0) (Expression 5.8). If the exit is not free, the car must

remain in the current cell (Expression 5.9). The update rule on the roundabout is shown

in Figure 5.5.

The update rules can thus be summarised:

• If C tn >1 and C t(n+1)=0, then  C (t+1)
n =0 and  C (t+1)

(n+1) = C (t+1)
n –1  (5.5)

• If C tn > 1 and C t(n+1) ≥1, then  C (t+1)
n = C tn                                      (5.6)

• If C tn =1, then  C(t+1)
n =0, if it is able to exit, otherwise, C(t+1)

n = C tn  (5.7)   

 Driving direction

time   t 0 u 0 v 0 w x 0 0

time   t +1 0 0 u-1 0 v-1 w 0 x-1 0

Figure 5.5: The update rules on the roundabout

There are several advantages of using this notation instead of just 0 and 1 as in

1DDCA. Firstly, this notation puts three meanings into a single integer number, so that

the update rule becomes uniform for the roundabout, and is also simple and easy to

program. The number not only provides information on whether a cell is occupied or

vacant, but also indicates where its occupant will go. The update rule is as simple as for
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a normal road and it is the same for any cell on the roundabout. When a car drives out of

the roundabout, the number automatically becomes zero.

Secondly, if we want to visualise the car on the roundabout in the future, its

directional indicators may also be noted. Driving on the left lane in UK and Ireland for

example, we can simply define it like this: if the number in the cell ≥ (a+b+c+d)/2, its

RT indicator is on; if the number ≤ (a+b+c+d)/4 the left indicator on.

Thirdly, this method makes multiple entrance/exit programming possible and it

can be applied to simulation of traffic flow where origin and destination are known, by

assigning the vehicle a number corresponding to the steps needed to arrive at its

destination exit.

5.3.5 Theorems of optimum density, throughput  and size

The following theorems are developed to indicate the relationship between size

density (the density is defined to be the number of vehicles on a road or a roundabout

divided by the number of cells of the road or roundabout) and throughput of the

roundabout. Theoretical deductions are given in this section and empirical proofs are

given in Section 5.4.

Theorem 1: If the number of cells in a roundabout is even, assuming all the

vehicles are evenly distributed on the roundabout (gaps between all vehicles are equal),

the optimum density is 0.5 and the maximum throughput (see Section 5.2) is not related

to the size (= number of cells) of the roundabout. If the density is smaller or larger than

0.5, the throughput observed will be smaller than the maximum throughput.

Theorem 2: If the number of cells of a roundabout is odd, equal to (2n+1) cells,

two local optimum densities are n/(2n+1) or (n+1)/(2n+1). Both have the same

throughputs, which are maximum for the given size of the roundabout. The throughput is

smaller than the maximum if the density is smaller than n/(2n+1) or larger than

(n+1)/(2n+1). The maximum throughput increases slightly with the size of the

roundabout.
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These theorems can be proved based on average speed (av) from density (ρ) in a

queue or in free flow. For a queue, av = (1-ρ)/ρ. For free flow, av=1, (Chopard 1998).

We may assume that all vehicles on average travel through Ω cells on the

roundabout.  If the total number of cells (N) is even or odd, that is N=2n or N=2n+1

respectively, where n is an integer and Q is the number of vehicles on the roundabout,

then density

ρ = Number of vehicle /Number of cells = Q / N                                 (5.8)

Proof of Theorem 1, (N=2n)

Case 1:

When the density is 0.5, i.e. ρρρρ1 = 0.5 and N =2n, Q1 computed from Equation

5.8, Q1 =ρ1 N= n. Hence there are n vehicles on the roundabout. It is free flow, therefore

av1=1. Time-steps (t) needed for Q vehicles to pass through the roundabout is given by

t1 = Ω/ av1 = Ω. The passing rate of roundabout (q) is the number of vehicles (Q)

passing through a roundabout in one time step.  Thus, q1 = Q1 / t1 = n /Ω.

When turning rates are fixed, Ω is related to the total number of cells of the

roundabout, i.e. Ω = δ (2n), where δ is a constant related to the turning rates. We can

now assume that Ω = β n, where β is just the constant redefined. Therefore, q1= 1/ββββ, i.e.

the passing rate of roundabout has no relationship to the size of the roundabout when the

density is 0.5.

Since throughput is the number of vehicles, which pass through the roundabout

in a given time, this equals passing rate times the number of time steps. Thus, throughput

has no relationship to roundabout size when the density is 0.5.

Case 2:

For m vehicles on the roundabout (Q2 = m) and m< n, thus ρρρρ2 < 0.5 and traffic is

free flow. We get av2=1, t2= Ω/av2 = Ω, q2 = Q2 / t2 = m/Ω.
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Since Ω = β n, q2= m/(β n). As m < n, q2 < q1, then if the density on roundabout

is less than 0.5, the passing rate is less than q1.

Case 3:

When vehicle number (Q3) on the roundabout is k and k> n, we get ρρρρ3  = k/2n >

0.5. There is now a queue on the roundabout, so av3<1 and av3 = (1-ρ)/ρ = (2n-k) /k.

Therefore, t3 = Ω/av = Ω k/(2n-k), q3 = Q3 / t = k/( Ω k/(2n-k))= (2n-k)/Ω .

 As  Ω = β n, q3= (2n-k)/ β n. Since k > n, (2n-k)/ β n< (2n-n)/ β n= 1/ β.

Therefore q3  < q1, i.e. if the density on roundabout is larger than 0.5, the passing rate is

also less than q1. Thus, 0.5 is the optimum density. Also, q1 is the maximum passing rate.

Therefore maximum throughput has no relationship with size of the roundabout, for

number of cells even.   

Proof of Theorem 2, (N=2n+1)

We also assume here that all vehicles on average pass Ω cells to traverse the

roundabout.

Case 1:

When the vehicle number Q4 = n, ρ4 = n/(2n+1) and ρρρρ4 < 0.5. Thus, av4=1.

Consequently t4= Ω/av =Ω, q4 = Q4 / t4  = n /Ω. . Similarly, q4=β (2n+1). Therefore,

q4= n/ (β (2n+1))                                                               (5.9)

Assuming η=1/β, then q4= η n/(2n+1). For two roundabouts (a and b), if size of

a > size of b, i.e. (2 na+1)> (2 nb+1), then na > nb,.  thus we can get na /(2 na+1) > nb /(2

nb+1). Therefore qa  > qb , where qa  and qb are the passing rates of two roundabouts, i.e.

the passing rate increases with the size of the roundabout.

Case 2:
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When Q5 = n+1, ρ5=(n+1)/(2n+1), (ρρρρ5 > 0.5) and there is a queue on the

roundabout. Thus, av5 = (1-ρ)/ρ = n /(n+1), t5 = Ω /av5 = Ω (n+1)/n, q5 = Q5 / t5  =

(n+1) / (Ω (n+1)/n)  = n/ Ω. As Ω = β (2n+1),

q5= n/ (β (2n+1))                                                                              (5.12)

According to Equations 5.9 and 5.10, q4 = q5. It follows that both densities

n/(2n+1) and (n+1)/(2n+1) have the same passing rate.

Case 3:

When ρ6= m /(2n+1) and m< n, Q6 = m and ρρρρ <0.5, so there is free flow on the

roundabout. q6= m/ (β (2n+1)). Since m < n, q6 < q4, i.e. if the density on the

roundabout is smaller than n/(2n+1), the passing rate is less than q1.

Similarly, we can show that if density is larger than (n+1)/ (2n+1), the passing

rate is less than q4. Therefore, when the density is n/ (2n+1) or (n+1)/ (2n+1),

throughput reaches a maximum for given roundabout size. The maximum throughput

increases with the size of the roundabout.

5.3.6 Implementation

The program has been developed in two parts. The first part handles data input.

It produces a configuration file for use by the second program. The second is the main

program. In the former, data entered include the number of roads, the length of each

road, the number of cells between entrances and the length of time for the simulation.

Also, further information is provided on mean arrival and turning rates of each road, and

driver behaviour probabilities are adjustable. Hence, the program can simulate different

traffic configurations and different geometric sizes and shapes of roundabouts.

The main program contains two classes: road and roundabout classes. Both

classes contain the following functions: driving-in, driving-out, update and information

output. The information output functions give us all the information about the operation
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of the roundabout for each time unit, (1 time unit = 60 time-steps) and also in total. This

includes details such as:

• Number of cars entering the roundabout

• Numbers of vehicles that have passed through and remain on each road

• Number of vehicles that have passed through roundabout (throughput)

• Density and queue length of each road, expected delay times at entry etc.

5.4 Single-lane Roundabout Simulation

In order to study the three aspects of roundabout performance, which have been

mentioned at the beginning of Section 5.3, the following experiments have been carried

out. In each experiment, the length of each entrance road is 100 cells. If the throughput is

printed in bold, (as in Table 5.2 for instance), it means that the queue length has reached

the length of the road on at least one road, which we denote saturated. All experiments

are carried out very long periods (equivalent to 30 hours or 10800 time-steps).

5.4.1 Relationship between the size (or shape) and the overall

throughput

In Section 5.3.5, this relation has been deduced mathematically. The experiments

are set up to investigate the theorems of optimum density and throughput on the

roundabout. The first series of experiments seek to determine the relationship between

size and throughput of the roundabout based on the same topology, i.e. a four-arm

roundabout (four entrances/exits), but of different sizes (i.e. number of cells). Over 100

paired experiments have been performed. In each pair of experiments, the topologies,

arrival rates and turning rates are the same, and driver behaviour is taken to be same but

sizes of roundabouts are varied. One contained 16 cells, the other 32 cells for example.

In Table 2, the means of turning rates for left-turn, straight and right-turn are taken to be

0.25, 0.5 and 0.25 respectively and all use optimal entry conditions. Different shapes of

roundabouts are also explored, (i.e. distances between the entrances taken to be

different).
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Five sets of experimental results are shown in Table 5.2, in which the numbers of

cells are even, i.e. 16, 32 and 50. In the first two experiments, the distances between

entrances are equal (equal-spacing), but sizes are different. In the third and fourth

experiments, the distances between entrances are varied (non-equal-spacing) and sizes

are also different. In the fifth experiment, the size is 50 cells and again non-equal

spacing applied.

Table 5.2: Throughputs (vph) for the numbers of cells of roundabouts are

even and the topologies and turning rates are the same
Size

(cells)

A1 to

A2

(cells)

A2 to

A3

(cells)

A3 to

A4

(cells)

A4 to

A1

(cells)

Throughput1

AR =0.15

Throughput2

AR=0.20

Throughput3

AR =0.25

Throughput4

AR=0.30

16 4 4 4 4 2149 2883 3578 3600
32 8 8 8 8 2157 2884 3578 3597
16 3 4 3 6 2159 2876 3575 3595
32 13 5 3 11 2158 2886 3581 3599
50 5 15 10 20 2159 2889 3577 3598

A1 to A2 is the distance between the first and the second entrance of the roundabout. Throughput1 is

the throughput when the means of all arrival rates (AR) are 0.15.

We find that throughput values in each column (with the same arrival rates) are

very similar, although sizes and shapes are different. The throughputs change when

arrival rates increase (for the first three columns). Throughputs do not appear to depend

on whether the distances between the entrances are equal or unequal, as long as turning

rates and the topologies are the same. The same results are also found for other

topologies, i.e. 3-arm roundabouts. The results indicate that the overall throughput is not

related to size for roundabouts, given that numbers of cells are even and for topologies,

arrival rates and turning rates otherwise the same.

In Table 5.3, the number of cells are odd, 17, 21, 41 and 51. Non-equal-spacing

applies throughout. We also find that throughput values in the first two columns (with

arrival rates of 0.15 and 0.20) are similar, although sizes and shape differ. However,

throughputs in the last two columns (with arrival rates of 0.25 and 0.30) increase with

the size of the roundabout.
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When arrival rates are lower, there are no queues on the entrances and no

saturated situations. Throughput values are equal to the number of vehicles that arrived

at the roundabouts, so values in each column are the same, (see e.g. arrival rates = 0.15

and 0.20 in Table 5.3). By contrast, when arrival rates are higher, e.g. 0.25 and 0.30, the

throughputs increase with the size of the roundabout.

Table 5.3: Throughputs (vph) for numbers of cells of roundabouts are odd

and the topologies and turning rates are the same
Size

(cells)

A1 to

A2

(cells)

A2 to

A3

(cells)

A3 to

A4

(cells)

A4 to

A1

(cells)

Throughput1

AR=0.15

Throughput2

AR=0.20

Throughput3

AR =0.25

Throughput4

AR=0.30

17 3 5 4 5 2166 2874 3457 3481
31 5 7 11 8 2157 2867 3514 3514
41 5 17 11 8 2146 2873 3527 3524
51 5 27 11 8 2154 2877 3531 3538

The experimental results support the theorems of optimum density on the

roundabout. Whether a vehicle can or can not drive onto a roundabout depends on the

situation at the entrance, where these are the bottlenecks.

For an individual vehicle passing through a large sized roundabout, more time

steps are needed compared to the requirement for a small one. However, considering the

roundabout as a whole, the number of vehicles passing through relies on how many

opportunities there are for vehicles to enter. The size and geometry of a roundabout have

therefore no direct influence on throughputs of single-lane roundabouts when the

number of cells is even.

However, the phenomenon of maximum throughputs increase with size, when

the number of cells is odd, is caused by the free flow requirement, i.e. there is one space

and one vehicle alternatively on the road. One extra space is not enough to add an extra

vehicle and also keep traffic in free flow, as any extra vehicle will block the vehicle

behind. If no extra vehicle enters the roundabout, this extra space only increases the

travelling distance of vehicles (conclusions apply for an ideal situation, i.e. uniform size

and speed of vehicles), hence non-optimum spacing (or size) is a factor.
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5.4.2 Relationship between throughput and arrival rates

Table 5.4 and Figure 5.6 show that throughputs change with arrival rates. Arrival

rates of three roads, i.e. (AR1, AR2 and AR3) are the same and increase from 0.05 to 0.45.

Arrival Rate of road 4 (AR4) also increases from 0.05 to 0.55.

Table 5.4: Throughputs vs. arrival rates
AR4 (0.10=360vph)AR1,= AR2

=AR3 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

0.05 722 932 1075 1259 1448 1618 1807 1976 2113 2117 2121

0.10 1262 1409 1619 1804 1971 2185 2352 2452 2441 2442 2455

0.15 1808 2002 2151 2337 2520 2691 2786 2799 2797 2793 2790

0.20 2352 2545 2697 2884 3064 3155 3164 3170 3151 3166 3166

0.25 2794 2983 3178 3371 3570 3576 3582 3574 3584 3589 3600

0.30 2932 3124 3310 3443 3591 3599 3591 3599 3580 3589 3600

0.35 3051 3252 3331 3444 3591 3595 3600 3595 3599 3591 3601

0.40 3175 3250 3339 3463 3586 3598 3596 3600 3599 3599 3596

0.45 3177 3251 3338 3439 3599 3600 3589 3598 3596 3591 3599

For AR1=AR2=AR3 < 0.25, we find that throughput increases linearly as arrival

rate of road 4 (AR4) increases, (for no entrance saturated). For example, for

AR1=AR2=AR3= 0.10, and when AR4 ≥ 0.40, road 4 is saturated and throughputs are

constant. The maximum throughput is achieved when road 4 saturates. Thus throughputs

increase as arrival-rates increase to a saturation level.

When an arrival rate for an entry road ≥ critical arrival rate (CAR), saturation

occurs on the entry road. For these conditions, CAR = 0.4 for road 4, which is indicated

in shading in the table. Critical arrival rates varied with the other three ARs. The

relationship between CAR and arrival rates of the other three roads is:

• If AR1=AR2=AR3 < 0.25, then CAR4=0.5 – ARi                           (5.11)

• If AR1=AR2=AR3 ≥ 0.25, then  CAR4=0.25                                      (5.12)

where i = 1, 2 or 3.
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Figure 5.6: Throughputs vs. arrival rate.

When AR1 = AR2 = AR3 ≥  0.25, even though AR4 < 0.05, one entrance road of

the roundabout is over saturated. For any AR > 0.25 saturation will happen in at least

one entrance road.

We also find that the value of critical arrival rate is constant and CAR = 0.25

(Expression 5.12), when AR1 = AR2 = AR3 ≥  0.25. Throughputs reach a maximum

rapidly and remain constant at this saturation level on all four roads.

We also find that by balancing arrival rates (AR1 = AR2 = AR3 = AR4), the

operational performance of a roundabout can be improved. If we define the effective

throughput as the throughput when no entrance road is saturated, the maximum effective

throughput that we find is 3458 vph and it is achieved when AR1 = AR2 = AR3 = AR4 <

0.25.

5.4.3 Relationship between throughput and turning rates

For situations when cars are driving on the left-hand side of the road, such as in

the UK and Ireland, the relationship between throughput of a roundabout and turning

rates can be observed from Table 5.5. The data generated are based on a 32-cell 4-road-

single-lane roundabout. AR1 = AR2 = AR3 = AR4. The mean of straight-through rates
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(STR) remains constant = 0.5. The mean right-turning rate (RTR) increases from 0.15 to

0.35 and left-turning rates (LTR) vary from 0.35 to 0.15 respectively.

Table 5.5: Throughputs of the roundabout for AR1=AR2=AR3=AR4 and

Right-turning rate is from 0.15 to 0.35. Straight going rates are 0.5
Right Turning RateAR1=AR2=AR3=AR4

0.15 0.25 0.35

0.15 2160 2158 2160
0.20 2898 2885 2881
0.25 3615 3570 3267
0.30 3999 3599 3273
0.35 3996 3600 3270

In Table 5.5, when AR1=AR2=AR3=AR4= 0.15 and 0.20 , traffic is in free flow.

Turning rates have no impact on throughput. When AR1=AR2=AR3=AR4= 0.25 and RTR

is 0.15, traffic is still in free flow. However, when RTRs are equal to 0.25 and 0.35,

entrance roads are saturated and turning rates do affect throughputs, by about 10% (see

difference of 3570 to 3267 vph). When AR1 = AR2 = AR3 = AR4 > 0.25, turning rates also

affect throughputs: 5% increase in RTR, gives around 10% decrease in throughput.

Throughputs thus decrease as right-turning rates increase when entrance roads are

saturated.

5.4.4 Individual road performance—queue length

In Figure 5.7, the queue-lengths change with AR4, which gives us a clear picture

of how critical arrival rate corresponds to the maximum throughput and saturation. In

Figure 7, AR1=AR2=AR3=AR4 = 0.20, but AR4 increases from 0.2 to 0.4.

When AR4 is below the critical arrival rate (CAR=0.30, Section 5.4.2), the

queues will usually be short and frequently no car is waiting to enter so that throughput

will be less than the maximum.
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Figure 5.7: Queue-lengths on road 4 change with AR4 from 0.20 to 0.4, for

AR1=AR2=AR3= 0.20.

When AR4 ≥ CAR, we find that the queues build up very quickly (Figure 5.7). It

takes about 900 time-steps (15 minutes) for AR4=0.35 to result in a queue up 100 cells. It

takes about 600 time-steps (10 minutes) for AR4=0.40 to match the same length.

Basically, the speed of formation of the queue increases as AR4 increases. The queue

reaches the maximum length very rapidly for any arrival rate larger than CAR (0.3 under

these conditions).

5.4.5 Individual road performance—expected delay time

     (a)                                                                                          (b)

Figure 5.8: Queue-length and delay-time of road 1 for 10,000 time steps
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Expected delay time is determined based on the available opportunities for

vehicles to drive onto the roundabout in the last 100 time-steps and the number of

vehicles on the given road. Figure 5.8 indicates the expected delay time and queue

length of road 1, when AR1=AR2=0.23, AR3=0.24 and AR4 = 0.25. Figure 5.9 (a and b)

give the details of the first 3000 time steps of Figure 5.8 (a and b). Queue length is

clearly a general indicator of delay time.

5.4.6 Individual road performance—average densities

(a) (b)

Figure 5.9: Density and queue length of road 2.

In Figure 5.9 (a) and (b), the densities (ρ) and queue-lengths change on road 2

when AR1=AR2=AR3=AR4=0.25. When density is 0.23 at time-step 6300 in Figure 5.9

(a), a queue forms, even though density is 0.23 is much less than 0.5. 0.5 is the

maximum density for free flow. Thus, queue may form even the density is much less

than the maximum free flow density.

When the queue reaches the maximum length of the road (100 cells), the density

of the entrance road is 0.73. In other experiments, we also found similar results with

queue formation occurring at densities in the range of 0.2 to 0.8 (similar to the

relationship between density and queue formation for an unsignalised intersection road,

Chopard (1998)). However, ρmax=0.8 for a queue of just 97 cells. Therefore, the
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maximum density and maximum queue length do not necessarily happen

simultaneously.

5.4.7 Driver Behaviour

The impact of driver behaviour on throughputs can be shown in the following

experiments. As explained in Section 5.3, a simplification for each experiment is to

assume one of conservative (Pco), rational (Pra), urgent (Pur) and radical (Prad ) to

have probability equal to 1, the other three equal to 0, i.e. all driver behaviour is

taken to be similar for a given special case. Although the model enables us to deal

with all possible combinations of driver behaviour, we use these four special

situations to give us some indication of how this behaviour impacts on roundabout

performance.

In Table 5.6, AR1=AR2=AR3=AR4 in each row. When AR1=AR2=AR3=AR4=0.10

in row 1, all throughputs are the same. When Pco =1 and AR1=AR2=AR3=AR4 ≥ 0.20,

throughput reaches the maximum and a saturated situation occurs on entrance roads, but

traffic flow on the roundabout remains in free-flow at all times. When Pra=1 or Pur =1,

throughputs are the same and are larger than throughputs for Pco =1. Traffic flow on the

roundabout again remaines in free-flow all times. When Prad =1 and ARs increases,

throughput decreases, as when AR1=AR2=AR3=AR4≥ 0.15, congestion occurs on the

roundabout.

Table 5.6: Throughput of roundabout when driver behaviour at four special situations.

Arrival rates are the same for all roads.

Driver behaviourRow
No

AR
Pco =1 Pra =1 Pur =1 Prad =1

1 0.10 1440 1439 1439 1443
2 0.15 2169 2169 2169 20
3 0.20 2446 2862 2873 3
4 0.25 2445 3575 3573 4
5 0.30 2436 3590 3599 2

Similar results are also found for other turning rates. As might be expected, the

collective conservative behaviour decreases throughput. Urgent behaviour, however, will
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not increase or decrease throughput, compared to rational behaviour. In contrast,

collective radical behaviour will cause congestion on the roundabout and radically

decrease throughput compared to rational behaviour. Driver behaviour is clearly not

universally good or bad in the real world, so that a distribution is clearly more

appropriate.

5.5 Calibration and Validation

The validation of this as for all the models discussed in this work involves two

aspects. The first is checking the model itself, which includes checking assumptions and

rules, where these represent a compromised view of the world reality plus the process

debugging.

Including this single-lane roundabout model, all our models have been tested by

the above methods. Update rules are tested by observing content in each cell in each

time-step. Details of the entry process are checked by observing interaction between

vehicles when vehicles enter the roundabout according to different driving behaviour.

Checking of the total number of vehicles entering the roundabout is also performed and

the sums of vehicles on the roundabout and passing through the roundabout reconciled.

The second aspect to consider was the reality of the model. Three levels of

validation are suggested by Shannon (1975), namely are:

• Validation of each subsystem

• Validation at the interfaces

• Validation of entire model

Ideally, this should be performed at both the macroscopic level to ensure that

overall performance of the model matches the observable reality, but also at a

microscopic level (calibration), with regard to individual vehicle-vehicle interactions

(Brackstone and McDonald 1996).
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Individual vehicle-vehicle interactions are essentially confined to entrances.

Probabilities of different driver behaviour are assigned subjectively in our experiments,

which would benefit from calibration on further real data, as our field observations have

been necessarily limited.  

As we do not have much real data, we have calibrated our model by

comparing it with previous models. All previous roundabout capacity models

(Section 5.2) mainly analysed the relationship between the entry capacity and

circulating flow rate. In order to compare our model with previous models on the

same basis, the circulating and entrance situation have been simulated.

The original of Figure 5.10 was presented in an analysis paper of the

Transportation Planing Analysis Unit (TPAU 1998), which had the responsibility for

selecting the methodology for Oregon Department of Transportation (US) to analyse

roundabouts. We have added two results (curve CA and CA1) from our model to the

figure. These are compared with the SIDRA5.1 program, (Traffic Signalised &

unsignalised Intersection Design and Research Aid), two Highway Capacity Manual

methodologies (HCM (upper, lower) (US), an Australian methodology (AUSTROADS),

two German methodologies and the UK methodology (G1 and G2).

SIDRA5.1, HCM (upper and lower) and AUSTROADS are based on gap-

acceptance models. Models G1, G2 and UK are empirical models. Variables of

analytical models can be modified to match the driver behaviour of a target area, while

the empirical models are not ready to be modified (TPAU 1998). Some models (e.g.

SIDRA5.1 and G2) are more conservative than others, when the circulating flow is

heavy. However, among all methods mentioned above, a combination of SIDRA 5.1

and the German ‘G2’ methodology was recommended by TPAU (1998). Details of

comparison of all these models can be found in TPAU (1998).

Assuming that all driver behaviour is rational, we observed the relationship

between circulating flow rate and entering capacity shown in the curve CA1, which is

slightly below that for UK methodology and above the SIDRA5.1 result.
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According to the investigation on critical gap and follow-up time by Tian et al.

(1999), we have a further relationship between circulating flow rate and entering

capacity, shown in the curve CA. Tian et al. (1999) indicated that there were many

factors that might influence the critical gap and follow-up time, such as delays, vehicle

types, traffic movements and speed limits. They found that drivers use shorter critical

gaps at high circulating rates due to the effect of longer delays. Drivers may use longer

critical gaps when they do not need to wait so long to get a longer gap.

Figure 5.10: A comparison of roundabout methodologies

This finding had already been used in the Australian capacity formula, which

incorporated variations of critical gaps and follow-up times with different volumes of

traffic in order to over come the shortcomings of the gap-acceptance technique

(Taekratok 1998). Based on Tian's theory and recommendation of TPAU (i.e. a

combination of SIDRA 5.1 and the German ‘G2’ methodology is recommended),

probabilities of different driver behaviour can be therefore approximately calibrated. We

allowed the probability of conservative behaviour to change from 0.5 to 0 when the

CA

UK

SIDRA 5.1

G2
HCM (Lower)

G1

HCM (upper)

Australia

CA1
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circulating rates changed from 1800 to 0 vph (see Equation 5.13) and probabilities of

rational, urgent and radical behaviour change correspondingly according to Equations

5.14 and 5.15. We got the curve CA. We found that curve CA agreed well with most

methodologies.

Pco= 0.05 Qc /180                                                                    (5.13)

Pra= 1- Pco                                                                                          (5.14)

Prad = Pur= 0                                                                                      (5.15)

where Qc = (0~1800 ) circulating flow (vph)

 Pco= probability of conservative behaviour

Pra= probability of rational behaviour

Pur= probability of urgent behaviour

Prad = probability of radical behaviour

The moderating effect of this additional flexibility is clearly seen in Figure 5.10.

Overall, our model seems both flexibility and compatible with findings for other

countries and systems.

5.6 Summary

CA models have been used effectively to simulate traffic flow at urban

roundabouts. Various properties of roundabout operations have been explored, including

time delay, critical arrival rates, throughputs and queue formation, together with

variations of queue lengths, time delay and congestion on the roundabout itself.

Theoretical analysis has show that if the number of cells is even on the

roundabouts, then throughput does not depend on roundabout size, equal-spacing or non-

equal-spacing, given similar topology and other parameters held constant. If the number

of cells of the roundabouts is odd, throughput increases when the size of the roundabout

increases. Throughput levels in general are different across different topologies. Clearly,

the entrances are bottlenecks in terms of smooth operation.
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In general, throughput increases with arrival rate linearly when no entrance road

is saturated. Throughput reaches a maximum when the arrival rate reaches a critical

value on one or more roads. When the arrival rate is larger than the critical value,

saturation occurs on one or more roads. Critical arrival rates also depend on other road

arrival rates (e.g. Expression 5.9) and depend for all roads on roundabout topology and

turning rates. The operational performance of a roundabout is clearly improved when

arrival rates are balanced, (AR1=AR2=AR3=AR4).

Throughput decreases as right-turning rate increases, as vehicles on average need

to travel longer distances on the roundabout.

When arrival rate is less than the critical value, queue-length of an individual

road is low, but for arrival rate greater than critical, the queue length rapidly achieves

maximum. The speed of formation of the queue increases as arrival rates increase. Over

100,000 time-steps, the maximum queue-length or saturation of a given entry road was

observed to occur within a few hundred time-steps if arrival rates ≥ the critical arrival

rate.

Queue-length is an important indicator of delay. Queue formation occurs at

densities in the truncated range 0.2-0.8, which is similar to the result obtained by

Chopard (1998). The queue forms at a density far below the maximum for free flow,

which is 0.5. The maximum density and the maximum queue-length do not necessarily

occur simultaneously.

Driver behaviour has an impact on the overall performance of the roundabout

and individual roads. Rational, urgent and conservative behaviour leads to free-flow

on the roundabout for all arrival/turning rates considered, whereas radical behaviour

can lead rapidly to congestion.

Assigned probabilities are clearly subjective and would benefit from

calibration on real data, but equally are unlikely to be standard for real traffic

systems.
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Chapter 6

Multilane Roundabouts

6.1 Introduction

When traffic flow is too large for a single-lane roundabout to cope with,

multilane roundabouts are an alternative. Two-lane roundabouts, for example, are

heavily used in the UK and Ireland, whereas three-lane roundabouts are common in

other parts of the world, even in some parts of Europe. One of the reasons that two-lane

roundabouts are more commonly used than three-lane roundabouts clearly relates to

space required. In this chapter, we mainly model traffic flow at two-lane roundabouts,

since we are interested in the effects of lane-allocation on entry roads and lane-changing

on roundabouts, while the three-lane roundabout model is briefly considered in Section

6.5, as extension of the two-lane case.

6.2 Background

Two-lane roundabouts have previously been studied using gap-acceptance

models. Research has thus focused on the estimation of critical gaps in two (or multi-)

major-streams (Golias 1981, McDowell et al. 1983, Catchpole and Plank 1986, Hagring

2000). Golias (1981) used the EM algorithm, (Dempster et al. 1977), for estimating the

critical gaps in T-junctions (with two major streams) and McDowell et al. (1983) used an

edge distribution, which required observation of rejected and accepted gaps only in one

major lane when gaps in other major lanes were so large that the driver on a minor-

stream could not be influenced by them, (Hagring 2000).

Hagring (2000) presented a maximum likelihood method for estimating the

different critical gaps in the case of two major lanes and confirmed that it was possible

to estimate critical gaps separately for each major stream. The author also suggested that

gaps in the two lanes might not be correlated. However, his result that the critical gap in

the near lane was larger than that in far lane contradicted the result reported by Golias
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(1981) and McDowell et al. (1983). Hagring suggested that the explanation was that the

Golias (1981) and McDowell et al. (1983) studies were conducted on T-junctions or

combinations thereof whereas his investigation was on roundabouts.

Hagring (2000) also indicated that minor-stream vehicles in the outer lane were

also impeded by the far lane major-stream vehicles, even if these did not physically

interact, although no quantification of this conclusion has been reported and it is hard to

explain why this should be the cases. One explanation, given by Troutbeck (1990), was

that it might be difficult for the minor-stream vehicles in the outer lane to judge if the

far-lane major-stream vehicles would exit (or change lane). If this was the case, the

minor-stream vehicles on both lanes should have nearly the same amount of

opportunities to move onto the roundabout. However, according to our data recorded for

a two-lane roundabout, the minor-stream vehicles in the outer lane actually have roughly

double the amount of opportunities compared to minor-stream vehicles in the inner-lane.

Our explanation is that minor-stream vehicles on the outer lane are not impeded

by the far lane major-stream vehicles, but by minor-stream vehicles on the inner lane. In

other words, for a vehicle driving on the right-hand side in the UK and Ireland, minor-

stream vehicles on the left-lane are impeded by minor-street vehicles on the right-lane,

as the later block the view of the former. Therefore, even if the outer lane of a major-

stream is free, minor-stream vehicles on the left-lane still need to firstly position

properly and then to get a view and check whether the outer lane of major stream is free.

Thus, the delay is due to the position of minor-stream vehicles on the outer lane, so that

this suggests the need to introduce a position delay feature into modelling traffic flow at

two-lane roundabouts to simulate this delay.

In previous chapters, (Chapter 3, 4 and 5), we have analysed why the gap-

acceptance approach does not properly describe the driver behaviour and why it is not

suitable for modelling urban drive behaviour. In this chapter, we apply our MAP method

to modelling multilane roundabouts and investigate in the operational properties.
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6.3 Methodology

Vehicles at a two-lane roundabout observe the same priority rules as at a single

lane roundabout. Vehicles in the left-lane and right-lane of the entry roads move onto the

corresponding lanes of the roundabout.

Vehicle navigation through a roundabout is subjected to the following processes:

• Vehicle arrival:  vehicles  arrive at the beginning of entrance road ( e.g. 100

cells away from the roundabout)

• Pre-determined destination: each vehicle has its own pre-determined

destination (before entering an entry road and being allocated to a lane of the

entry road)

• Lane allocation: a vehicle is allocated to a lane on an entry road

• Vehicles move along entrance roads

• Position delay: vehicles on the left-lane of an entrance road may be halted

for position delay time (PDT), in order to adjust their positions and check if

they have opportunities to enter the roundabout, (details Section 6.3.2).

• Entering roundabout: interaction between drivers at the entrance and vehicles

on the roundabout

• Navigation of roundabout

• Exit

In this chapter, we mainly focus on the third, fifth, sixth and eighth processes

identified above, as the others are similar to previous chapters.

One factor that dictates which lane a vehicle is assigned to is the destination of

the vehicle. For example, if the vehicle turns right on a roundabout, it will be allocated to

the right-lane of the entry road. Logically, therefore, we assign the destination before

lane-allocation. It is also more realistic to assume that the destination remains

predetermined before navigation of the roundabout. Therefore, the destination remains

unchanged, once assigned, for all vehicles throughout the manoeuvre.
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6.3.1 Lane–allocation Process

The lane-allocation process at a roundabout is similar to for the major roads of a

2-lane TWSC intersection. However, criteria of lane-allocation differ slightly since

traffic flow features are different. For example, the feature that only right-turning (RT)

vehicles may use the right-lanes is common for 2-lane TWSC intersections, but is rare

for two-lane roundabouts. We develop three possible systems for two-lane roundabouts:

• Left-turning (LT) vehicles using left-lane only, straight-through (ST) and

right-turning  (RT) vehicles using right-lane only (Model A)

• LT vehicles using left-lane only, RT vehicles using right-lane only, and ST

vehicles can use both lanes (Model B)

• LT vehicles using left-lane only, unless the left-lane is full. RT vehicles

using right-lane only, unless the right-lane is full. ST vehicles can use both

lanes (Model C)

In the first scenario, the vehicles on the roundabout are free to exit and LT

vehicles are free to enter the roundabout, as vehicles on the outer-lane (outside of inner-

lane) of roundabouts are LT vehicles only. Another advantage of this system is that entry

vehicles need to check the space on the inner-lane of the roundabout only, because there

is no oncoming vehicle from the outer-lane. The interaction is only a merging process

between the vehicles in the circulating flow on the inner lane of the roundabout and

vehicles on the right-lanes of entry roads. No cross interaction occurs, as there is no

oncoming vehicle from the outer-lane of the roundabout. Thus, this system is safer than

others and is the most commonly used.

This system is implemented by putting traffic sign “arrow” marks on the surface

of entrance roads, which all drivers should observe. Obviously these rules typically only

be observed when the road is not saturated, as the ST vehicles will take the left-lane in

reality if the right-lane is full!

The second scenario is used to give greater flexibility to the ST vehicles. Driver-

lane selection might be based on personal preference, queue-length of each lane and
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perception of waiting time and so on. Based on our observations, we believe that queue-

lengths are the major factor. Drivers normally tend to select the shortest queue. As ST

vehicles can use the outer-lane, some passing interaction occurs when vehicles are

entering the roundabout and when vehicles on the inner-lane of the roundabout are

exiting. Thus, it is less safe than the first system.

The third scenario is a special case of Model B, when the left- or right- lane is

full, LT or RT vehicles can use the less busy lane. It is possible that Model C is the one

that most closely resembles reality in special situations, where there are high LT or RT

rates, but is otherwise not common. These three scenarios are modelled, but the

operational performances of Model A and B are particularly studied and compared in

Section 6.4.

6.3.2 Position Delay Time

We have observed one particular phenomenon of driver behaviour (see example

below), which to our knowledge is not reported by any other researchers, but which

should be built into viable roundabout models in our view. It occurs commonly on two-

lane minor roads of TWSC intersections and two-lane entry roads of roundabouts. The

occasion is that of driver on the vehicle on the left-lane needing extra time to adjust

his/her position to avoid sight-blocking caused by the vehicle and/or people sitting in the

front seats of the vehicle on the right-lane of the road. This is designated “Position Delay

Time” (PDT). Particularly for two-lane intersections and relatively large diameter

roundabouts, it is more difficult for the left-lane vehicle to check if there is a vehicle

oncoming from the right in these circumstances.

This phenomenon can also be found on the entry roads of three-lane

roundabouts. The vehicle on the right-lane has no problem observing the circulating

vehicle on the roundabout, but the vehicles in the middle-lane and left-lane have to

adjust their positions to get a better view.

The above finding is supported by our observations conducted at rush hour in the

afternoon from December 10 to January 10, 2002 at Panmure Roundabout (a three-lane
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roundabout, Auckland, New Zealand). Total tape-recorded observation hours were 6

hours. The observation results gave us only crude estimates and were used to form idea

of how PDT time works. Clearly the need for extensive collection is obvious.

6.3.3 Interaction at entrance of roundabout

We use two CA-rings to simulate the two-lane roundabout (as in the figure

shown in Appendix A). Both rings have the same number of cells, i.e. we assume that

the vehicles in both lanes transverse the same number of radians in the same period of

time. This is permitted by the assumption of an adjustment of the speed of the vehicle in

the inner lane (which has a shorter radius). Thus speed in this lane is taken to be slower

than the speed of the vehicle in the outer lane. Therefore, our assumption is closer to

reality than if all vehicles have the same speeds.

In order to simplify the representation, the shape of the arc of the roundabout

(Appendix B) with entry road can been changed to resemble Figure 6.1, which looks like

a T-intersection. The paths of vehicles in the left-lane and right-lane of the entry road are

shown in Figure 6.1 (d), while the paths of vehicles exiting from the roundabout (from

the inner and outer-lane) are shown in Figure 6.1 (c). When the vehicle in the right-lane

needs to change lane from the outer-lane to the inner-lane, it crosses the two cells

diagonally. Likewise, this is true for the vehicles coming from the inner-lane to the

outer-lane (see the curved arrow line). In other words, when the vehicle changes lane, it

move ahead one cell at the same time.

Following the MAP method, used in previous chapters, we show similar figures

to explain the conditions that are required by vehicles from entry roads. Again, driver

behaviour is categorised into four groups: conservative, rational, urgent and radical. The

distribution of driver behaviour can be expressed by four probabilities as before (see

Section 3.3.2).

The required conditions for the target vehicle (shaded) to move onto the

roundabout in this time step are indicated by the spaces required (shaded cells) in each

of Figures 6.1(a) to (d) and Figures 6.2 (a) to (d) based on different driver behaviour.
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Although the states in all cells in CA models are updated simultaneously, we

show in figure that the states of cells on the intersection have been updated in this time

step, but the cell that is occupied by the target vehicle (shaded) has not yet been updated

(not move on to the roundabout). We do this alternative to explain in detail how the

MAP method is used here (further details also see Section 3.3.5).

Inner lane
0 0 e 0 0 0 e Outer Lane

  a   b

Inner  Lane
0 0 0 Outer Lane

  c   d

Figure 6.1. Vehicle on the left-lane of the entrance road with behaviour of (a) rational, (b)
conservative, (c) urgent and (d) radical

The requirement for each cell is indicated by “0” or “e”, where “ 0” means that

the cell must be vacant and “e” means that the cell is either vacant or occupied by a non-

circulating vehicle. A non-circulating vehicle is a vehicle that is either just entering the

roundabout from an entry road or going to leave the roundabout in next time step.

Figure 6.2 indicates the requirements for the vehicles on the right-lane of the

entry road to enter the roundabout. Obviously, they need space in both lanes. All space

requirements are indicated cell by cell (and with the same notation “0” or “e”).



119

We assume that drivers use similar space requirements for each lane in the

figures, e.g. in Figure 6.2 (a). MAP covers 3 cells in both outer-lane and inner-lane. The

similar space requirement for each lane is also simpler to model than rules that a driver

requires different space for different lanes, because there are 4X4 combinations of rules.

0 0 0 0 0 0 0 Inner  Lane
e 0 e e 0 e Outer Lane

  A   b

0 0 0 Inner  Lane
e 0 0 Outer Lane

  C   d

Figure 6.2. Vehicle on the right-lane of the entrance road with behaviour of (a) rational,
(b) conservative, (c) urgent and (d) radical

The assumption of the similar space requirement for each lane is justified by the

argument that drivers’ heterogeneous behaviour is partially determined by their types and

individual characteristics, such as sex, age and driving experience, amongst others

(Teply et al. 1997), and not by their location -- different lanes. Thus, drivers who accept

a small space in one lane are likely to accept a small space in another lane. The

investigation of Nishida (1999) also supports Teply’s (1997) argument that age is an

important factor in determining not only driver reaction time but also driving behaviour.

However, it may be still an open question whether drivers do use the same space criteria

in each lane. Wilde (1982) suggested that a driver who accepts a small gap in one lane is

more likely to use a larger gap in the other lane in order to compensate for the risk.
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Hagring (1998 and 2000) also suggested that drivers use larger gaps in the near-

lane and smaller gaps in the far-lane. One reason offered for this was that there are two

different types of interactions involved: crossing and merging. The crossing interaction

is difficult to perform and takes more time, but the merging interaction is easier and

needs less time. Another explanation was that the speeds that the entering vehicle can

reach to pass the near-lane and far-lane are different, i.e. when the vehicle merges with

the far lane, the speed is higher than the speed of passing the near-lane. Golias (1981)

and McDowell et al. (1983) however reported the opposite result namely that the critical

gap in a far-lane was larger than that for the near-lane.

Our view is that all possibilities reflect the individual driver. A “risk-taker” takes

the same amount of risk either way, no matter whether the risk is equally or unequally

distributed between the two lanes (in agree with Wilde (1982)). On the other hand, a

“risk-averse” decision implies equal caution in both lanes. As the gaps in the gap-

acceptance models are not equal to our MAP (see Chapter 3), the assumption of equal

space requirements in each lane can be seen as a compromise.

6.3.4 Interaction on roundabouts

Immediately after entering the roundabout (at the next time step), the vehicles

from the right-lane of the entry roads move from the outer-lane into the inner-lane. In

our model, they move along the inner-lane until they arrive at the destination (exit road).

We assume that they do not change lane except for entering and exiting for simplicity.

This assumption agrees with our observations conducted at the roundabouts on N2 road

under M50 road and on N1 road and the North Street in April, June and September 2002,

in Dublin. In a total of 15 hours (5 rush hour and 10 non-rush hour), we found that less

than 3% vehicles change lane not for entering and exiting on the roundabout.

A few vehicles are found to move from the inner-lane to the outer-lane earlier

then they need to, when approaching the exit road. In other words, the driver will change

lane shortly before exiting the roundabout when s/he finds that the outer lane is vacant,

but still earlier than s/he needs to. Since such lane-changing occurs shortly before the

exit, (i.e. it does not confuse previous exit/entrance movements), the exiting vehicle
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should have no effect on any entering vehicle. Thus, this phenomenon does not violate

the earlier assumption and the overall performance of the roundabout does not change.

When some straight-going vehicles can drive on the outer-lane of the

roundabout, the vehicles driving on the inner-lane may be blocked by the vehicles

driving on the outer-lane. Theoretically, this blockage should not occur since according

to the rules of the road, vehicles on the outer-lane need to give way to vehicles driving

on the inner lane. However, blockages is common. Particularly when the vehicle in the

inner-lane is less than half a car ahead of the vehicle in the outer-lane. In this case, the

vehicle in the outer-lane may or may not give way to the vehicle in the inner-lane

depending on the interaction between them. In our model, we use a probability (give-

way rate) to simulate this random result of driver interaction. The probability is either/or

i.e. 0 (no driver gives way) and 1 (all drivers give way). Although we have not

determined the value of this probability explicitly, we can use our model to analysis the

likely effects of this interaction.

6.4 Two-lane Roundabout Simulation

In order to study the three aspects of roundabout performance, throughput,

capacity and queue-length, the following experiments have been carried out. In each

experiment, the length of each entrance road is 100 cells. If the throughput is printed in

bold, (as in Table 6.2 for instance), it means that the queue length has reached the length

of the road on all entrance roads, i.e. is saturated. Throughputs (see Table 6.5 and 6.6)

in bold and underlined means that on at least one entrance road a saturated situation

occurs, but not on all entrance roads. All experiments are carried out for 36,000(= 60 x

60 x 10 = 10 hours) time-steps.

6.4.1 Relationship between the size or shape and throughput

In Chapter 5, we give intuitive proofs of theorems on the relationship between

optimum density, the size of a roundabout and throughput. In this section, we use our

new models to test if the relationship is still valid for two-lane roundabouts. Since we
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have three models (Models A, B and C—see Section 6.3.1) for two-lane roundabouts,

(each of which have different lane-allocation patterns), we test these individually.

The experiments are set up based on the same topology: we consider just a four-

arm roundabout (four entrances/exits), but of different size measured in terms of the

number of cells in column 1 of Tables 6.1 and 6.2. In Table 6.1 for Model A for

example, the mean of left-turning rate (LTR) , straight-through rate (STR) and right-turn

rate (RTR) are 0.25, 0.5 and 0.25 respectively, and all use optimal entry conditions.

Also, the shapes of the roundabouts are different (asymmetric) in that the distances

between the entrances are different. Arrival rates (AR) of all entrance roads are 0.2, 0.25,

0.30 and 0.35 (equivalent to 720, 900 and 1080, 1260 vph respectively).

Model A: Five (from over 100) sets of experimental results of Model A are

shown in Table 6.1, in which the numbers of cells are even, i.e. 24, 28, 36, 38 and 50. In

the first two experiments, the distances between entrances are equal (equal-spacing), but

sizes are different. In the third and fourth experiments, the distances between entrances

are varied (non-equal-spacing) and overall sizes are also different. In the fifth

experiment, the size is 50 cells and again non-equal spacing applies.

Table 6.1: Throughput for Model A when the numbers of cells of roundabouts are even and

the topologies and turning rates are the same
Size

(cells)

A1 to A2

(cells)

A2 to A3

(cells)

A3 to A4

(cells)

A4 to A1

(cells)

Throughput1

AR =0.20

Throughput2

AR=0.25

Throughput3

AR =0.30

Throughput4

AR=0.35

24 6 6 6 6 2886 3594 4149 4334

36 9 9 9 9 2879 3591 4184 4329

28 6 5 7 10 2883 3591 4161 4336

38 7 5 8 18 2878 3616 4162 4333

50 5 15 10 20 2877 3602 4156 4334

A1 to A2 is the distance between the first and the second entrance of the roundabout. Throughput

(vph) is the throughput when the means of all arrival rates (AR) = 0.20, 0.25,0.30 and 0.35.

We find that throughput in each column (with the same arrival rates) is very

similar, despite different sizes and shapes. The throughput increases when arrival rates

increase. Throughput in each column appears neither to depend on equal- or unequal-

spacing, nor on the sizes of the roundabouts, providing turning rates and topologies are
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the same. Thus results for Model A are similar to the results for the single-lane

roundabout in Chapter 5. When the arrival rates are lower (≤ 0.25), we see no saturated

situations in any lane of any entrance road. When the arrival rates ≥ 0.30, queues appear

on all right-lanes of all entrance roads.

In Table 6.2, the number of cells is odd, 25, 37, 45 and 55. Non-equal-spacing

applies throughout. We also find that throughputs in the first two columns (with arrival

rates of 0.20 and 0.25) are not different, although sizes and shape differ. However,

throughputs in each column of the last two columns (with arrival rates of 0.30 and 0.35)

increased with the size of the roundabout. When arrival rates ≥ 0.30, queues appear

again on all right-lanes of all entrance roads.

Table 6.2: Throughput for Model A when the numbers of cells of roundabouts are odd and the

topologies and turning rates are the same

Size

(cells)

A1 to A2

(cells)

A2 to A3

(cells)

A3 to A4

(cells)

A4 to A1

(cells)

Throughput

AR =0.20

Throughput

AR=0.25

Throughput3

AR =0.30

Throughput4

AR=0.35

25 6 6 6 7 2885 3612 4070 4241

37 6 7 10 14 2879 3616 4086 4246

45 6 9 9 21 2881 3592 4096 4257

55 6 14 10 25 2873 3596 4108 4271

Comparing Table 6.1 and 6.2, all throughputs in the Throughput3 column in

Table 6.1 are larger than those in the Throughput3 column in Table 6.2. A similar

situation can be found for the columns of Throughput4. These results are expected

according to the theorems of the optimum density on the roundabout, because the

numbers of cells (= sizes) of roundabouts in Table 6.1 are even and thus the optimum

density can be achieved.

The results could be explained as follows:

• When arrival rates (≤0.25) are low, there are no queues on any entrances and no

saturated situations exist. Throughputs are thus equal to the number of vehicles that

arrive at the roundabouts. Consequently, there will be no difference between

throughputs, regardless of whether the size is even or odd, large or small.
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• When arrival rates ≥ 0.3), the queues form on the right-lanes of all entrance roads

(saturation). Traffic flow on the left-lanes of all entrance roads is, however, free

flow. The throughput is thus dictated by the operation of the inner-lane of the

roundabout. The inner-lane of the roundabout can be seen as a single-lane

roundabout. The only different is that there are no LT vehicles on it.

It is not surprising, therefore, that our theorems are proved to be applicable in

Model A, (again conclusions apply for an ideal situation, i.e. uniform size and speed of

vehicles).

Model B: Ten sets of experimental results for Model B are shown in Table 6.3,

in which the numbers of cells are even, i.e. 24, 28, 32,36, 40, 44 and 48. The distances

between entrances are equally-spaced for the first seven rows, but sizes are different.

The last three rows are for non-equally-spaced and different sizes.

Table 6.3: Throughput for Model B when the numbers of cells of roundabouts are even,

equal spacing, same topologies and turning rates.
Size

(cells)

A1 to A2

(cells)

A2 to A3

(cells)

A3 to A4

(cells)

A4 to A1

(cells)

Throughput1

AR=0.35

Throughput2

AR=0.40

Throughput3

AR=0.45

Throughput4

AR=0.50

24 6 6 6 6 5039 5757 6005 6036

28 7 7 6 8 5038 5757 6007 6046

32 8 8 8 8 5042 5056 6010 6066

36 6 9 9 12 5041 5756 6029 6069

38 10 10 10 8 5039 5756 6037 6073

40 11 11 11 11 5040 5761 6042 6074

48 7 10 7 14 5038 5758 6048 6075

We find that the throughput increases as the arrival rates increase for the same

roundabout. We also find that throughput in the first two throughput columns (with

arrival rates of 0.35 and 0.40) are not different, although sizes differ.

However, throughput in each column of the last two throughput columns (with

arrival rates of 0.45 and 0.50) increased with the size of the roundabout for both equal

and non-equal-spacing.
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Four sets of experimental results of Model B are shown in Table 6.4, in which

the numbers of cells are odd, i.e. 25, 37, 45, and 55. We also find that in the last two

throughput columns (with arrival rates of 0.45 and 0.50) values increase with the size of

the roundabout. We can see by comparing column 3 in Table 6.3 and Table 6.4, that

throughputs with an even number of roundabout cells (Neven) may be larger than the

throughputs with odd number of cells (NOdd), even if the Neven <. NOdd.

The relationship between the size and throughput of Model B is different from

that of Model A. The explanation of this difference appears due to the difference of lane-

allocation processes between two models. However, further theoretical analysis on why

and how lane-allocation processes cause this difference are needed.

Table 6.4: Throughput (vph) for Model B when the numbers of cells of roundabouts are odd and the

topologies and turning rates are the same

Size

(cells)

A1 to A2

(cells)

A2 to A3

(cells)

A3 to A4

(cells)

A4 to A1

(cells)

Throughput

AR=0.35

Throughput

AR =0.40

Throughput

AR=0.45

Throughput

AR=0.50

25 6 6 6 7 5034 5758 6003 6038

37 6 7 10 14 5021 5733 6017 6049

45 6 9 9 21 5051 5737 6028 6059

55 6 14 10 25 5049 5742 6036 6075

Comparing Table 6.1 and 6.2 with Table 6.3 and 6.4, we find that Model B has a

better operational performance with higher throughput when arrival rates ≥. 0.30.

Particularly, when 0.45 ≥ arrival rates ≥ 0.30, saturation occurs for Model A, but not for

Model B.

6.4.2 Relationship between throughput and arrival rates

Table 6.5 and Figure 6.3 show that throughputs vary with arrival rates for Model

A for the numerical simulations reported. Arrival rates of three roads (AR2, AR3 and AR4)

are taken to be the same and allowed to range from 0.15 (540vph) to 0.45 (1620vph).

Arrival Rate of road 1 (AR1) also increases from 0.10 (360vph) to 0.55 (1980vph).

For AR2=AR3 =AR4< 0.30, we find that throughput increases linearly as arrival

rate of road 1 (AR1) increases, when no entrance is saturated. For example, for AR2=AR3
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=AR4= 0.15 , when AR1 ≤ 0.45, road 1 is in free flow, but when AR1 ≥ 0.45, road 1 is

saturated and throughputs continues to rise with a maximum at AR1 max.   

Table 6.5: Throughputs vs. arrival rates for Model A.

AR11AR2 =
AR3, =AR4 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
0.10 1438 1621 1797 1977 2160 2339 2520 2697 2877 2939
0.15 1982 2165 2337 2519 2698 2886 3067 3190 3238 3297
0.20 2518 2702 2879 3058 3240 3394 3503 3561 3613 3625
0.25 3053 3233 3416 3596 3778 3837 3891 3937 3972 4016
0.30 3422 3615 3818 3999 4156 4205 4242 4290 4350 4382
0.35 3654 3844 4033 4176 4307 4350 4391 4434 4466 4508
0.40 3903 4086 4202 4311 4430 4470 4523 4565 4612 4654
0.45 4145 4226 4334 4431 4565 4608 4649 4686 4724 4764

For AR2=AR3 =AR4 ≥ 0.3, we find also that road 1 saturates only when AR1 ≥ 0.3,

whereas even for a negligible entry rate for road 1, increase in arrival rates on the other

three roads (AR2=AR3 =AR4 ≥ 0.3) means that at least one entrance road of the

roundabout is saturated.

Figure 6.3 Throughputs vs. arrival rates for Model A.

The above findings for Model A can be summarised in the following three

expressions. When the arrival rate of the entry road ≥ critical arrival rate (CAR),

saturation occurs on the entry road. The empirical relationships between CAR1 and

arrival rates of other three roads is:

• If AR i= 0.05, then CAR1≥ 0.60                                                    (6.1)
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• If 0.05<ARi≤ 0.20 and ARi >0.05, then CAR1=0.6 – ARi       (6.2)

• If ARi=≥ 0.25, then CAR1 =0.3                                                    (6.3)

                           where i = 2, 3 or 4.

The above CAR formulae also can be expressed in terms of vph.

• If ARi = 180 vph, than CAR1 =2160 vph                    (6.4)

• If ARi < 1080 vph, then CAR1=2160 – ARi               (6.5)

• If ARi≥ 1080 vph, then CAR1 =1080 vph                 (6.6)

where i = 2, 3 or 4.

Throughput of the Model A two-lane roundabout continues to increase with

arrival rate when all roads are saturated (i.e. arrival rate > CAR). The situation is

different from that in single-lane roundabouts. Because Model A only allows LT

vehicles to use the left-lane of entrance road, traffic on the left-lane is always free flow.

Therefore, when arrival rates increase, the number of LT vehicles continues to increase.

Consequently throughput also increases.

Table 6.6 and Figure 6.4 show that throughputs change with arrival rates for

Model B. Again, arrival rates of three roads (AR2, AR3 and AR4) are taken to be the same,

but vary from 0.20 (720vph) to 0.65 (2340vph). The arrival rate of road 1 (AR1)

increases from 0.25 (900vph) to 0.65 (2340vph).

Table 6.6 Throughputs vs. arrival rates for Model B.
AR11AR2 = AR3,

=AR4 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.25 3414 3608 3783 3943 4111 4297 4501 4685 4832 4848
0.30 3964 4141 4293 4497 4690 4861 5033 5166 5163 5163
0.35 4478 4699 4848 5038 5211 5384 5484 5508 5507 5508
0.40 5025 5224 5403 5572 5764 5867 5872 5865 5874 5856
0.45 5357 5520 5685 5836 5962 6012 6035 6051 6034 6045
0.50 5460 5603 5753 5886 6009 6058 6053 6070 6077 6073
0.55 5553 5728 5832 5910 6023 6080 6088 6094 6105 6105
0.60 5673 5765 5851 5953 6036 6081 6100 6109 6112 6109
0.65 5703 5783 5851 5959 6042 6098 6112 6114 6127 6132

For AR2=AR3 =AR4< 0.45, we find that throughput increases linearly as arrival

rate of road 1 (AR1) increases, when no entrance road is saturated. For example, for
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AR2=AR3 =AR4= 0.25, AR1 ≤ 0.60, road 1 is in free flow, but when AR1 ≥ 0.60, road 1 is

saturated and throughput is a constant (different from Model A) and maximum.

For AR2=AR3 =AR4 ≥ 0.45, we find also that road 1 is saturated only when AR1 ≥

0.45. If AR1 < 0.45, at least road 1 is free flow. When AR2=AR3 =AR4 ≥ 0.45, even

though AR1 = 0.0, at least one entrance road of the roundabout is in situated situation. If

three road arrival rates are equal, they should then be less than 0.45. Otherwise

saturation will occur on at least one entrance road.

For AR2=AR3 =AR4 ≥ 0.45, throughput increases with AR1, when AR1 < 0.45.

Throughput is approximately constant when AR1 ≥ 0.45. Throughput shows little

difference when all arrival rates ≥ 0.45.

The above findings for Model B can also be summarised in the following

expressions. The empirical relationship between CAR and arrival rates of other three

roads is:

• If ARi < 0.45, then CAR1=0.8 – ARi                                        (6.7)

• If ARi ≥ 0.45, then CAR1 =0.45                                                (6.8)

where i = 2, 3 or 4.

Figure 6.4 Throughputs vs. arrival rates for Model B.

The above CAR formulae also can be expressed in terms of vph.

• If ARi < 1620 vph, then CAR1=2880 – ARi                            (6.9)
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• If ARi ≥ 1620 vph, then CAR1 =1620 vph                              (6.10)

 where i = 2, 3 or 4.

We also find that balanced arrival rates (AR1=AR2=AR3=AR4), lead to

improvement in operational performance of the roundabout for both Model A and Model

B. Again, if we define the effective throughput as the throughput when no entrance

road is saturated, the maximum effective throughput (MET) that we find is 3665 vph for

model A when AR1=AR2=AR3=AR4=0.28, and 5806 vph for model B when

AR1=AR2=AR3=AR4=0.43 . When arrival rates are not equal, the effective throughput is

less than optimal.

6.4.3 Relationship between throughput and turning rates

For situations when cars are driving on the left-hand side of roads, such as in the

UK and Ireland, the relationship between throughput and turning rates of a roundabout

can be observed from the tables and figures below. The data generated are based on a

32-cell 4-road-two-lane roundabout with AR1=AR2=AR3=AR4.

Table 6.7: Throughputs of the roundabout for AR1=AR2=AR3=AR4 and a right turning rate between

0.05 to 0.45. Straight through rates are 0.5 for Model A

Right Turning RateAR1=AR2=AR3

=AR4
0.05 0.15 0.25 0.35 0.45

0.15 2161 2158 2165 2162 2160
0.20 2876 2877 2879 2881 2871
0.25 3604 3595 3596 3515 3083
0.30 4333 4307 4156 3627 3121
0.35 5040 4954 4350 3728 3150
0.40 5750 5234 4523 3841 3194
0.45 6345 5478 4686 3961 3234

Table 6.7 and Figure 6.5 show the relationship between throughput and turning

rates for Model A. The mean ST rate (STR) is the same (= 0.5). The mean right turning

rates (RTR) is allowed to increase from 0.05 to 0.45 in increments of 0.05, while LT

rates (LTR) consequently vary from 0.45 to 0.05. As the arrival rate increases from 0.15

to 0.45, we see the traffic on the entry road (to the roundabout) changes from free flow

to saturation.
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In Table 6.7, when AR1=AR2=AR3=AR4  < 0.25 (in row 1, 2 and 3), traffic flows

freely and turning rates have no impact on throughput. When AR1=AR2=AR3=AR4= 0.25

(row 3) and RTR is 0.25, traffic still flows freely. However, when RTRs are equal to

0.35 and higher, entrance roads are saturated and turning rates do have some effect on

throughputs. When AR1=AR2=AR3=AR4>0.25 (in rows 5, 6 and 7), the turning rate also

affects throughput: When RTR increases by 0.10, this gives around a 15% decrease in

throughput when entrance roads are saturated.

Figure 6.5 Throughputs change vs. right-turning rate for Model A

In Figure 6.5, the curve of RT=0.05 (RTR=0.05) increases linearly until

AR1=AR2=AR3=AR4 = 0.45, and traffic flows freely (AR1=AR2=AR3=AR4 <0.45). Thus,

0.45 is the CAR for the turning rate. CARs for RTR=0.05, 0.15, 0.25, 0.35 and 0.45 are

0.45, 0.35, 0.3 0.25 and 0.25 respectively. All curves follow the same pattern of increase

with arrival rates when AR1=AR2=AR3=AR4 > CAR.

Table 6.8: Throughputs of the roundabout for AR1=AR2=AR3=AR4 and RTR is between 0.05 to 0.45.

STRs are 0.5 for Model B
Right Turning RateAR1=AR2=AR3=A

R4 0.05 0.15 0.25 0.35 0.45
0.2 2879 2876 2878 2881 2878

0.25 3597 3600 3598 3596 3590
0.3 4317 4313 4318 4312 4327

0.35 5038 5044 5038 5047 4765
0.4 5758 5754 5764 5408 5057

0.45 6477 6476 6054 5438 5070
0.5 7196 6729 6095 5476 5066

0.55 7653 6793 6113 5504 5067
0.6 7699 6809 6133 5503 5072
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Table 6.8 and Figure 6.6 show the relationship between throughput and turning

rates for Model B.  Again, the mean ST rate (STR) remains 0.5, and the mean of RTR

and LTR change over a wider range compared to Table 6.7.

Figure 6.6 Throughput vs. RTR rate for Model B

In Table 6.7, when AR1=AR2=AR3=AR4  <0.3 in rows 1 to 3, traffic flows freely,

and turning rates have no impact on throughput. When AR1=AR2=AR3=AR4= 0.3 (in row

5) and RTR is 0.35, traffic still flows freely. However when RTRs are equal to 0.45,

entrance roads are saturated and turning rates do have an effect on throughput. When

AR1=AR2=AR3=AR4>0.3, turning rate also has an effect on throughput: When RTR is

increased by 0.10 this gives around a 10% decrease in throughput when entrance roads

are saturated. The relationship between RTR and its CAR can be roughly expressed by

the following empirical relation.

CAR (for AR1=AR2=AR3=AR4) = 0.4 - 0.5(RTR - 0.35)                       (6.11)

6.4.4 Queue formation: roundabout and individual road

In the experiments in Section 6.4.2, the operational performance of throughput

has been studied. The same experiments also reveal the relationship between the queue

formation and arrival rates of a roundabout.
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Table 6.9: Queue-formation vs. arrival rates for Model A.

AR11AR2 = AR3,

=AR4 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
0.10 Free Free Free Free Free Free Free Free F234 F234
0.15 Free Free Free Free Free Free Free F234 F(2)34 F(2)34
0.20 Free Free Free Free Free Free F234 F234 F(2)34 F34
0.25 Free Free Free Free F234 F34 F34 F34 F34 F34
0.30 F123 F12 F12 F12 S S S S S S
0.35 F12 F12 F1 F1 S S S S S S
0.40 F12 F1 F1 F1 S S S S S S
0.45 F1 F1 F1 F1 S S S S S S

We name the four entrance roads of a roundabout clockwise, i.e. a RT vehicle

from road 1 for example, enters the roundabout from road 1 and passes road 2 and road

3, and exits at road 4. When all entrance roads are flowing freely or not fully saturated

(the length of queue is less than the length of road (100 cells)), we denote this situation

as “Free” (see Table 6.9). If only road 3 and 4 are flowing freely or are not fully

saturated, we denote this as F34. The designation F(2) means that road 2 has been

saturated in some but not all experiments. “S” means all entrance roads are fully

saturated for all roads.

Table 6.10 Queue formation vs. arrival rates for Model B.

AR11AR2 =
AR3, =AR4 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.25 Free Free Free Free Free Free Free Free F234 F234
0.30 Free Free Free Free Free Free Free F234 F234 F234
0.35 Free Free Free Free Free Free F234 F234 F234 F234
0.40 Free Free Free Free Free F234 F234 F234 F234 F234
0.45 F12 F12 F12 F1(2) F1 S S S S S
0.50 F12 F12 F1 F1 F1 S S S S S
0.55 F12 F1(2) F1 F1 F1 S S S S S
0.60 F1(2) F1 F1 F1 F1 S S S S S
0.65 F1 F1 F1 F1 F1 S S S S S

Queue-formation for all entrance roads of Model A and Model B are shown in

Table 6.9 and Table 6.10. We find that road 1 is always in free flow or not fully

saturated when AR1≤ 0.25 for Model A, AR1≤ 0.65 for Model B and AR2=AR3 =AR4

(regardless of their value). Also road 2 may be free flowing as well (depending on the

arrival rate of road 1). If AR2=AR3 =AR4≤ 0.25 for Model A and AR2=AR3 =AR4≤ 0.40,

roads 3 and 4 are always in free flow or are not fully saturated (regardless of the arrival

rate on road 1). With the same conditions, road 2 may be free flowing for Model A, but

road 1 is always free.
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6.4.5 Individual road performance—queue lengths

For individual roads (as in model A), queues can form only on the right-lane of

an entrance road. For Model B, two lanes of an entrance road have to be studied, as

queues can form on both lanes.

Figure 6.7. Queue-length of road 1 varied with AR1 for Model A. AR1 increases

from 0.2 to 0.40 when AR2=AR3=AR4 = 0.25

In Figure 6.7, queue-lengths of the right-lane of road 1 change with AR1, (for

Model A). This gives us a clear picture of how critical arrival rate corresponds to the

saturation. Figure 6.7, AR2=AR3=AR4= 0.25, AR1 increases from 0.25 to 0.4. As CAR=

0.30, Figure 6.7 shows the queue formation pattern for AR1 less than, equal to and

greater than CAR.

When AR1 is below the critical arrival rate, queues to enter the roundabout will

usually be short and frequently there are no cars waiting to enter. This means that

throughput will be less than the maximum. When AR1 = CAR, we find that the queues

build up slowly (Figure 6.7, AR1=0.3). It takes about 120x60 time steps (=2 hours) for

AR1=0.30 to result in a queue of up to 100 cells. The queue can also disappear after

another 120X60 time steps (=2 hours).

Queue-length of  road 1
 for AR2=AR3=AR4=0.25

0

20

40

60

80

100

1 61 121 181 241

Time steps (1 unit = 60 time steps)

Q
ue

ue
-le

ng
th

 (c
el

l)

AR1=0.25 AR1=0.30

AR1=0.35 AR1=0.40



134

When AR1 ≥ CAR, queues are built up very quickly. It takes less than 30x60

time-steps (= 1/2 hour) for AR1=0.35 to reach 100 cells, whereas it takes about 15x60

time-steps (= 1/4 hour) for AR1=0.40 to reach the same length. The speed of formation

of the queue increases as AR1 increases. The queue reaches the maximum length very

rapidly for any AR >> CAR (similar to findings for single-lane roundabouts).

Figure 6.8 Queue-lengths of the left-lane of road 1 vs. AR1 for Model B

Figure 6.8 and 6.9 show how the queue-lengths of the left- and right-lane of road

1 change with AR1 for Model B. These give us a picture of how critical arrival rates

correspond to the saturation on both lanes of the road. In Figure 6.8, AR2=AR3=AR4 =

0.40, AR1 increases from 0.40 to 0.55. As CAR= 0.45, Figures 6.8 and 6.9 show the

queue formation patterns on both lanes when AR1 less than, equal to and greater than

CAR1.

We find that both lanes have a similar queue-formation pattern. Since the lane-

allocation process is based on the queue-length of each lane, ST vehicles are allocated to

the lane with the shorter queue. (It is unsurprising that both lanes have the same pattern,

but does show that the model is operating as intended).
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Figure 6.9. Queue-lengths of the right-lane of road 1 vs. AR1 for Model B

Again when AR1 is below the critical arrival rate, the queues are usually short or

non-existent. When AR1 = CAR, queues build up slowly (Figure 6.8 AR1=0.45). It takes

about 60x60 time steps (=1 hour) for AR1=0.40 to result in a queue of up to 100 cells.

The queue will not vanish unless AR decreases.

When AR1 ≥ CAR, queues again build quickly. It takes less than 30x60 time-

steps (= 1/2 hour) for AR1=0.50 to reach 100 cells. It also takes about 30x60 time-steps

(= 1/2 hour) for AR1=0.55 to equal the same length.

6.4.6 Position Delay Time (PDT) and give way on the roundabout

Table 6.11. Throughputs vs. PDT for Model A

Arrival Rates (AR1= AR2=AR3=AR4 )PDT
0.35 0.40 0.45 0.50 0.55 0.60

0 4336 4534 4700 4884 5056 5236
2s 4342 4519 4705 4878 5057 5247
4s 4337 4516 4701 4877 5060 5246
6s 4341 4521 4710 4881 5066 5253

For Model A, the PDT has little effect on the throughput (Table 6.11), as only

LT vehicles occupy the left-lane of entrance roads. However, for Model B, nearly two

thirds of vehicles that enter an entrance road finally pass through the right-lane (Table

6.12). Therefore, PDT is likely to have considerable effect on the entrance capacity of

each road and overall performance-throughput for Model B.
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Table 6.12. Throughputs vs. PDT for Model B

Arrival Rates (AR1= AR2=AR3=AR4 )PDT
0.35 0.40 0.45 0.50 0.55 0.60

0 5041 5754 6273 6324 6377 6413
2s 5038 5760 6012 6053 6094 6112
4s 5040 5726 5789 5817 5840 5847
6s 5042 5643 5661 5671 5685 5700

Table 6.12 and Figure 6.10 show the effects of PDT on throughput. When the

arrival rates ≤0.35 and PDT ≤ 6s, there is no difference in throughput. When arrival rates

≥ 0.40, throughput decreases as PDT increases. In particular, when arrival rates = 0.40,

the PDT can strongly influence the traffic situation from flowing freely to congestion.

Figure 6.10. Throughputs vs. PDT form Model B

When entry roads are not crowded (arrival rates ≤ 0.35), the position delay of the

entering vehicle does not result in blocking of following vehicles. There is also less

opportunity for the vehicles in the left-lane of an entry road to experience such delay, as

the number of vehicle in the right–lane is typically small. However, if the entry road is

crowded, more vehicles or nearly every vehicle in the left-lane of an entry road will

experience delay time, and such delay will cause the entering vehicles to further block

the vehicles behind. The longer the PDT, the fewer vehicles enter the roundabout.  As a

result, throughput decreases as PDT increases.
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6.4.7 Driver behaviour

The impact of driver behaviour on throughput of Models A and B can be shown

in the following experiments. We assume that the sum of probabilities of conservative

(Pco), rational (Pra), urgent (Pur) and radical (Prad ) is equal to 1 as usual. For simplicity,

all drivers are of one type in the first instance. These are clearly special situations, which

are examined to give us some indication of how extremes of driver behaviour impact on

two-lane roundabout performance. A mixed driver set is also possible of course and

easily tested with our models.

Table 6.13 Driver behaviour vs. throughput for Model A

Arrival Rates (AR1= AR2=AR3=AR4 )Driver behavior
0.20 0.25 0.30 0.35 0.40 0.45

Pco =1 2878 2988 3168 3356 3532 3705
Pra=1 2880 3583 4163 4332 4516 4704
Pur=1 2877 3598 4161 4336 4525 4702
Prad=1 765 950 1074 1253 1441 1646

Tables 6.13 and 6.13 show the results for Model A and Model B, in which

arrival rates are equal in each column. For all AR = 0.20 for Model A and all AR = 0.30

for Model B in column 1, all throughputs are the same except that of Prad =1. When Pco

=1 and AR1=AR2=AR3=AR4 ≥0.25 for Model A and AR1=AR2=AR3=AR4 ≥0.35 for

Model B, throughput reaches the maximum and a saturated situation occurs on entrance

roads, while traffic flow on the roundabout remains in free-flow at all times. When

Pra=1 or Pur =1, throughputs are similar for Model A (different for Model B), but larger

than those for Pco =1. Traffic flow on the roundabout again remains free at all times.

When Prad =, all AR >0.20 for Model A and all AR >0.30 for Model B, throughputs are

reduced compared to others discussed, as congestion forms on the roundabout. Similar

results are also found with other turning rates.

Table 6.14 Driver behaviour vs. throughput for Model B

Arrival Rates (AR1= AR2=AR3=AR4 )Driver
behavior 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Pco =1 4322 4475 4512 4552 4582 4589 4620
Pra=1 4320 5038 5764 6012 6053 6094 6112
Pur=1 4319 5061 5768 6345 6398 6434 6494
Pred=1 83 95 62 19 26 19 33
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Thus, similar to the conclusion for single-lane roundabouts, collective

conservative behaviour decreases throughput. Urgent and rational behaviours give

similar performance. In contrast, collective radical behaviour can cause congestion on

the roundabout and decrease in throughput compared to rational behaviour. Driver

behaviour is clearly not the same for every driver in the real world, so that a distribution

of driver behaviour is more appropriate, but our results do reproduce the phenomenon of

congestion on a two-lane roundabouts due to too many drivers not observing the give-

way rules.

6.5 Three-lane Roundabouts

A vehicle navigating a three-lane roundabout experiences much the same process

as it does for a two-lane roundabout (Section 6.2) with the following differences:

• When a vehicle decides its destination, it also decides which lane it needs to

takes, as LT, ST or RT vehicles go to the left-, middle- or right-lane respectively.

Hence, strictly speaking, lane allocation is automatic.

• A vehicle in the left- or middle- lane experiences different Position Delay Time

(PDT) (details see Section 6.3.2)

• Interaction between drivers at the entrances of roundabouts are as shown:

(details see Figures 6.11 – 6.13)

Again, we use a similar method and similar figures to explain the conditions that

are required by vehicles from entry roads. The required conditions for the target vehicle

(shaded) on the left-lane on a three-lane entry road to move onto the roundabout in this

time step are indicated by the space required (shaded cells) in each figure based on

different driver behaviour (Figure 6.11). Figure 6.11(d) also shows the path of the

vehicle as it enters the roundabout. The requirements for each cell are again indicated by

“0” or “e”, where “0” means that the cell must be vacant and “e” means that the cell is

either vacant or occupied by a non-circulating vehicle (Section 6.3.3).

Figure 6.12 indicates the requirements for the vehicles in the middle-lane of the

entry road to enter the roundabout. Obviously, space is needed in two lanes. Figure 6.12
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(b) indicates paths of vehicles leaving roundabouts and Figure (d) shows the path for an

entering vehicle from the middle-lane of an entry road.

Inner lane
Middle

0 0 e 0 0 0 e Outer Lane

  a   b

Inner lane
Middle

0 0 0 Outer Lane

  c   d

Figure 6.11. Vehicle on the left-lane of the entrance road with behaviour of (a) rational
drivers, (b) conservative, (c) urgent and (d) radical

When a vehicle changes lane on a roundabout, it moves diagonally across two

cells in two lanes. Vehicles change a lane and move forward for one cell at the same

time. This applies to all changing lane movements on roundabouts. Consequently, LT

vehicles, which do not change lanes on roundabouts, are not affected. Equally, vehicles

driving in outer-lanes do not need to change lanes on the roundabout either, so are not

involved. Therefore only ST and RT vehicles are involved, as they need to change lanes

to enter or exit the roundabout.

Figure 6.13 indicates the requirements for the vehicles on the right-lane of an

entry road to enter the roundabout. Obviously, space is need in three lanes. Figure 6.13

(d) also indicates a path for an entering vehicle from the right-lane of an entry road.
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Inner lane
0 0 E 0 0 0 e Middle
e 0 e e 0 e Outer Lane

  a   b

Inner lane
0 0 0 Middle
e 0 0 Outer Lane

  c   d

Figure 6.12. Vehicle on the meddle-lane of the entrance road with behaviour of (a) rational
drivers, (b) conservative, (c) urgent and (d) radical

Clearly, vehicles on outer and middle- lanes of a roundabout move freely to the

exit, (assuming outer-lane exits occur appropriately). However, when vehicles in inner-

lanes exit, they have to interact with the vehicles in the middle lanes, (no interaction with

the outer-lane is considered, if appropriate outer-lane behaviour is assumed, since

movement to the outer-lane presumes that the desired exit is imminent). The interaction

is similar to the interaction between vehicles in inner-lanes and outer-lanes for Model B

and C (see Section 6.3.4); therefore, a similar give-way rate is applied.

This extension has not been presumed further to date, in part because of space

restrictions on large roundabouts in urban areas, but the prototype model appears to

perform reasonably.
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0 0 0 0 0 0 0 Inner lane
e 0 0 e e 0 0 Middle
e 0 e e e 0 e Outer Lane

  a   b

0 0 0 Inner lane
e 0 0 Middle
e 0 0 Outer Lane

  c   d

Figure 6.13. Vehicle on the right-lane of the entrance road with behaviour of (a) rational
drivers, (b) conservative, (c) urgent and (d) radical

6.6 Summary

Three two-lane roundabout models are developed with different lane-allocation

patterns. Various properties of two-lane roundabout operations have been explored

including throughput, turning rates, critical arrival rates the queue formation process,

together with variations of queue lengths and congestion on the roundabout itself.

For Model A, conclusions are similar for the relationship between throughput

and size of a two-lane roundabout to those obtained for single-lane roundabouts. If the

number of cells of the roundabouts is even, then throughput does not depend on

roundabout size, equal-spacing or non-equal-spacing, given similar topology and other

parameters held constant. If the number of cells of the roundabouts is odd, throughput

then increases with size of roundabout. Theorems obtained (Chapter 5) thus apply to

Model A.
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The case is different for Model B, where choice of lane is possible. Throughput

depends on size of the roundabout, regardless of the number of cells (even or odd) and

given similar topology and other parameters held constant. In general, throughput

increases with size if all numbers of cells are either all even or all odd.

For both Models A and B, throughput increases with arrival rate linearly when

no entrance road is in a saturated situation. Throughput reaches a maximum when the

arrival rates reach their maximum for Model A. Throughput reaches a maximum when

the arrival rate reaches a critical value on one or more roads for Model B.

When the arrival rate is larger than the critical value, saturation occurs on one or

more roads. Critical arrival rates (CAR) also depend on other road arrival rates and on

roundabout topology and turning rates for all roads.

The operational performance of a roundabout is improved when arrival rates

(AR1=AR2=AR3=AR4) are balanced. Throughput decreases as RT rate increases when

one or more roads are saturated, as vehicles, on average, need to travel longer distances

on the roundabout.

When arrival rate is less than the critical value, queue-length of an individual

road is low, but for when arrival rate is greater than the critical rate, the queue length

rapidly achieves maximum.

For Model B only, Position Delay Time (PDT) has an effect on throughput when

the arrival rate is close to or larger than CAR. Throughput also decreases as PDT

increases. PDT has little effect on throughput, as left-lanes of Model A are theoretically

in free-flow at all time.

Driver behaviour has an impact on the overall performance of the roundabout

and individual roads. Rational, urgent and conservative behaviour leads to free-flow on

the roundabout for all arrival/turning rates considered, whereas reckless behaviour can

lead rapidly to congestion for both Models A and B. For Model A, there is no difference

between rational and urgent behaviour in respect of throughput, but for Model B,
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throughput is different for urgent and rational behaviour. Conservative behaviour leads

to decreased throughput for both Models.

Compared to Model A, Model B has better operational performance with higher

throughput when all arrival rates ≥. 0.30. Particularly, when 0.45 ≥ all arrival rates ≥

0.30, saturation occurs for Model A, but not for Model B. However, Model A is safer

than Model B, as there is theoretically, no cross traffic on the Model A roundabout.  



144

Chapter 7

Summary and Future Research

7.1 Overview of Research Focus

In this chapter, we present the summarised our research first, its contribution and

further comments. Finally, we also propose an extension of the approach to simulate

heterogeneous driver and vehicle units, and discuss further research possibilities.

7.1.1 Summary of main findings

In this thesis, a new model to study unsignalised traffic flow in urban networks is

proposed, which is based on Minimum Acceptable sPace (MAP) method. Using MAP, the

model, implemented using cellular automata (CA), can simulate heterogeneous and

inconsistent drive behavior and interaction between drivers for different traffic conditions,

and for a variety of urban and inter-urban road features.

Two types of road features have been focused on: (i) two-way stop-controlled

(TWSC) intersections and (ii) roundabouts. A TWSC intersection is controlled by priority

and stop rules. Priority rules require that vehicles from a minor street give way to vehicles

from a major street, and RT vehicles from a major street give way to LT vehicles from a

major street. The stop rule demands that a vehicle stops at the stop-line before entering the

intersection. Priority rules are also known as offside priority rules (by which a vehicle

entering gives way to one already on the roundabout). In addition to all vehicles being

governed by the rules mentioned above, the process of passing through an intersection

and/or roundabout depends on the process of drivers’ self-organisation (Wang and Ruskin

2001, 2002), and e.g. the phenomenon of priority-sharing (Troutbeck and Kako 1999).

Driver interaction and behaviour are the main focus of the work effort so far. Our

model has, for the first time (to our knowledge), attempted to categorise different driver

behaviour based on different space requirements (MAP) and to detail the space conditions to

the requirement of each cell inside the space required, in order to ascertain the effect on
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performance. Driver behaviour at intersection or roundabout entrances is randomly

categorised as rational, (when optimum conditions of entry are realised), conservative,

urgent and radical, with specified probabilities. Drivers are also randomly assigned to one of

the above categories at each time step. In this way, our CA model has successfully simulated

elements both of heterogeneous and inconsistent driver behaviour (Ruskin and Wang

2002b), whereas drivers in the previous gap-acceptance models are assumed to be

homogeneous and consistent (Troutbeck and Brilon 1997).

Furthermore, our CA models successfully apply to TWSC intersections and

roundabouts in networks, where the headway distributions are insufficient to describe traffic

flow, (Ruskin and Wang 2002a).

Three aspects of intersection and roundabout performance in particular have been

studied. The first, looks at overall throughput (the total number of vehicles, which navigate

the intersection or roundabout in a given time) and capacity (the number of vehicles can

enter intersection or roundabout from an individual entry road), for different geometric

conditions, arrival and turning rates. The second investigates changes in queue-length, delay-

time and vehicle density for an individual road and roundabout. The third considers the

impact of driver choice on throughput and operation of the roundabout.

Driver behaviour clearly has an impact on the overall performance of intersections

and roundabouts, as well as on flow in individual roads (Wang and Ruskin 2002). Rational,

conservative and urgent behaviour leads to free-flow on the intersections and roundabouts

for all arrival/turning rates considered, whereas radical behaviour can rapidly lead to

gridlock.

The model has successfully reproduced, for the first time, the typical congestion

phenomena in the operation of roundabouts and intersections (gridlock). Failure to obey the

road rules is as crucial a factor in congestion as traffic density, according to our findings.

Our model clearly shows how driver behaviour can cause traffic system failure (Wang and

Ruskin 2002).

Capacity of minor streams in a single-lane TWSC intersections are found to depend

on flow rates of major-streams, and this also changes with flow rate ratio (FRR= flow rate of
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near lane: flow rate of far lane). Hence the flow rates corresponding to each stream must be

clearly differentiated (Ruskin and Wang 2002 a).

We have also noted that a two-lane TWSC intersection does improve mobility of

minor steams, measured in capacity comparing to single-lane TWSC intersection.

However, entry capacity of the minor road and the RT capacity of the major road are

nearly zero when major-road arrival rates ≥1440 vph for a two-lane TWSC intersection.

Compared to 2-TWSC intersections, for the same minor-road capacity, traffic

lights are found to positively effect throughput. However, it should be stated that this is

conditional on there being enough vehicles on all roads to fully utilise the green light

periods. In addition, signalised intersections improve cross flow, but at expense of

vehicles on the major streams.

An additional feature of our approach is that, while previous models looked at

roundabouts as a combination of many T-intersections, our model treats a roundabout as a

unified system so that we can study how the arrival rate of one entrance can affect other

entrances or be affected by other entrances.

We also develop theorems of optimum density, capacity and size of the roundabout

based on our findings. The theorems are proved theoretically (Section 5.3.5) and shown

empirically. We find that throughput does not appear to depend on single-lane roundabout

size in some situations, if the number of cells of the roundabouts is even. If the number of

cells of the roundabouts is odd, throughput then increases when the size of roundabout

increases. Size of the roundabout is not an important in term of throughput. Clearly, the

entrances are bottlenecks in terms of smooth operation (Wang and Ruskin 2002).

For the single-lane roundabout, we noted that throughput of roundabout increases

with arrival rate linearly when no entrance road is in a saturated state. Throughput reaches a

maximum when the arrival rate reaches a critical value on one or more roads. When the

arrival rate is larger than the critical value, the state of saturation occurs on one or more

roads. Critical arrival rates also depend on other road arrival rates, roundabout topology and
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turning rates. Throughput decreases as right-turning rate increases, as vehicles on average

need to travel longer distances on the roundabout.

Three two-lane roundabout models, Model A, B and C are developed with

different lane-allocation patterns. Model C can be seen as an extreme situation of model

B. Therefore, Model A and Model B are the main focus of the results reported here.

For Model A, our conclusions are similar with respect to the relationship

between throughput and size of a two-lane roundabout to those obtained for single-lane

roundabouts. The theorems obtained in Chapter 5 thus apply to Model A but not for

Model B.

For both Models A and B, throughput increases linearly with arrival rate when

no entrance road is in a saturated condition. Referring to Model A, throughput reaches a

maximum when all arrival rates reach their maximum. But, with regard to Model B,

throughput reaches a maximum when arrival rate reaches a critical value on one or more

roads.

Critical arrival rates (CAR) also depend on other road arrival rates and on

roundabout topology and turning rates for all roads for both Models A and B.

For Model B only, Position Delay Time (PDT) has an effect on throughput when

the arrival rate is close to or larger than CAR. Throughput also decreases as PDT

increases. Referring to Model A, PDT has little effect on throughput, as left-lanes of are

theoretically in free-flow at all time.

We have seen that driver behaviour has an impact on the overall performance of

the roundabout and on individual roads. Rational, urgent and conservative behaviour

leads to free-flow on the roundabout for all arrival/turning rates considered, whereas

reckless behaviour can lead rapidly to congestion for both Models A and B. For Model

A, there is no difference between rational and urgent behaviour in respect of throughput,

but for Model B, throughput is different for urgent and rational behaviour.
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Compared to Model A, Model B has better operational performance with higher

throughput when all arrival rates ≥. 0.30. Particularly, when 0.45 ≥ all arrival rates ≥

0.30, saturation occurs for Model A, but not for Model B. However, Model A is safer

than Model B, as there is theoretically, no cross traffic on the Model A roundabout.  

7.1.2 The integrated picture and future direction

In our research, we creatively use CA models to simulate heterogeneous and

inconsistent driver behaviour and interaction in unsignalised different cross traffic flow

situations for urban/interurban networks (see Section 3.3). Part of this work has been

published in three papers and a conference presentation (published abstract), (Wang and

Ruskin (2001, 2002), Ruskin and Wang (2002a and b)). While CA models have been

used to model different aspects of vehicle movement, such as randomised vehicle

speeds, interaction (such as over-taking, following) on highways etc. To our knowledge,

this is the first work to attempt to simulate heterogeneous and inconsistent driver

behaviour and interactions of cross-traffic. Pervious cross-traffic analytical models, i.e.

gap-acceptance model, unrealistically assume that drivers do not vary in their behaviour.

Gap-acceptance models fail to model the phenomenon that indicates interactions

between drivers. Neither give-way between the major streams nor platoons are

considered in gap-acceptance model.

Our model not only overcomes some of the drawbacks of gap-acceptance models

(details see Section 3.2.2), but also develops the traffic flow picture for the urban

context. MAPs of radical and urgent driver behaviour are less than the optimal space.

When a driver from the minor road use one of these two MAPs, he/she may block the

oncoming vehicle on the major road. In this way, our models simulate the phenomena of

“priority sharing” and gridlock. This represents an important contribution to

understanding of why traffic systems fail and we believe that the methodology has wide

application.

The second important feature of this research is the focus on roundabout

operation, implementation through a unified CA ring (or rings) to model traffic flow at a

roundabout (Wang and Ruskin, 2001 and 2002). CA models have typically been applied
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to model straight-through flows (such as highways), but never been applied to

circulating flow. Stimulated by work of Chopard (1998), we have developed a CA ring

model that can be used for roundabouts of various types. The stochastic CA ring models

(theoretically, the update rules that govern CA-ring are not stochastic, but aggregated

behaviour has a stochastic nature) presented here have been used to address issues of

heterogeneity and inconsistency in driver behaviour as well as driver-interactions on

single-lane and multilane roundabouts. These issues of driver behaviour have been

demonstrated to be lacking in models, such as those for gap-acceptance and, from our

results, can be crucial in terms of influencing performance measures. Other

quantification of performance measures is also discussed in detail for a number of

complex road features.

We also suggest important features in traffic flow, which to our knowledge have

not been considered before, which are Stop Sign Delay Time (SSTD) and Position Delay

Time (PDT). These phenomena are important, as they are part of the driver interaction

process, and should not be overlooked in modelling unsignalised traffic flow.

Limitations and possible further considerations, which have been suggested by

the work to date, are as follows: Firstly, there is clearly need to gather more real data to

validate and test current models and give these a basis and reinforcement for further

development. We have recorded some tapes of traffic flow (including several of flow at

three-lane roundabouts in New Zealand-also a left-hand driving country). Some data are

also available from publications (e.g. Robin and Tian 1997) and research conducted by

Dr Tian (Texas Transportation Institute, USA), although primarily collected to test e.g.

gap-acceptance criteria. Clearly, collaboration with the relevant local government bodies

would be useful in this regard.

Secondly, using CA models clearly offers one viable approach to future effort in

understanding traffic flow, control and management, but there are limitations in the work

to date. For example, speed or length of vehicle can be more accurately described by

further partitioning roads (resulting in smaller size of cells), although the approach may

drastically increase computational time and algorithm complexity. In this respect, we
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may need to look at efficient parallel computing, especially where overhead of data

exchange between nodes can be minimised.

7.2 Modelling Heterogeneous Driver and Vehicle Units

In this section, we suggest how the MAP method might be applied to simulation

of heterogeneous driver and vehicle units, which we see as a next obvious step.

In contemporary multi-class traffic flow modelling, the focus is mainly on using

macroscopic traffic flow models to model highway multi-class traffic flow (Zhang 1999,

Hoogendoom et al. 2000, Wong and Wong 2002). In particular, a great deal of effort has

been spent to replicate three major traffic flow patterns, such as discontinuity and

platoon-dispersion phenomena (which are observed from highway traffic data) (Wong

and Wong 2002).

a b

c d

Figure 7. 1 Two-stream intersections for a long vehicle driver: (a) rational, (b) conservative

 (c) urgent and (d) radical

Major-stream

Minor-stream

Space
Space

Major-stream

Minor-stream

Space
Space
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One main assumption in macroscopic models is that vehicles are treated as a

particle, (where the lengths of the vehicles are neglected). Consequently, so called

multiple user-classes (multi-classes) mean that dynamics (speeds, acceleration and

deceleration capabilities) for these classes are different. In each class, vehicles have the

same acceleration (up to a class-specific velocity) and deceleration capabilities. The

differences are shown when vehicles have interactions, such as overtaking and lane-

changing, (Hoogendoom et al. 2000).

However, in an urban network, when the speed limit is 50 km /h or under, all

vehicles can reach and adopt this speed. The difference in acceleration abilities is not

obvious when the speed limit is this low. Furthermore, the dynamics of vehicles have no

obvious effect on queue formation and delay time (Chopard 1998). Therefore, in our

heterogeneous driver and vehicle unit models, we assume that the differences between

units are in vehicle length and driver behaviour, not in speed and acceleration and

deceleration ability. The difference in lengths of vehicles is an important factor that

effects the operation of urban networks (measured as usually by capacity, throughput

etc.) Ruskin and Wang (2002a) indicate that a long vehicle can be considered based on

occupation of more than one cell.

From aerial photographs, (which are generally flown at 5,000 feet at photo scale

of 1:10,000 http://www.mapflow.com), we can see the differences of vehicle lengths in

the city of Dublin. If we assume a normal car has a length of one unit, the length of long

vehicles can be roughly categorised into either two units or three units. Therefore, we

propose that the different vehicle lengths can be considered based on occupation of two

or three cells.

As an analogy to our MAP method, we can consider that a rational driver driving

a 2-unit long vehicle requires the same space as a conservative car driver. Figure 7.1

shows the space requirements for different drivers.

Figure 7.2 shows that an additional cell is required in each lane for the same

category of driver behaviour. For a 3-unit long vehicle, two additional cells are needed.
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0 0 0 0 b b 0 0 0 0 0 b b
0 a a a 0 a a a a

a b

Figure 7. 2 A ST 2-unit-long vehicle from a minor-street: (a) rational behaviour
 (b) conservative behaviour.

A distribution of three different lengths of vehicles can be estimated from

collection of real data e.g. from the aerial photographs or at streets. The distribution may

of course vary with different time of a day, e.g. in rush hours, at delivery times/days etc.

The approach described in this thesis should therefore extended viably to further

consideration of heterogeneity of vehicle lengths.

A

Major-street

A

Minor-street
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Appendix A  Two-lane roundabout 
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Appendix B Traffic-light time setting                                                                                                              
 
 
Traffic lights (each column = 3 seconds)   
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Appendix C Multilane TWSC Intersection 
 

This figure shows a 2-lane intersection. The cell numbers are corresponding to the 

program of intersection2 header file. 
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