Microcontrollers

→ a complete “Computer on a Chip”

Combines in one package:

• ALU
• Memory
 • program memory
 • data memory
• I/O devices
• Clock Generation

![Block Diagram of the AT89C core](image)

The Screecher

Create a low-cost design for a battery operated box that has:

• a button
• a light
• a very loud hooter

When the button is pressed, the light should begin to flash, and then rapidly get faster, until it seems to be on all the time.

The hooter then sounds for two seconds, waits for four seconds, sounds for 0.4 second, waits for 15 seconds sounds for 1/10 second.

Digital Logic

Possible to design with digital logic but complex, varying flash rate would complicate the ASM

Analog Electronics

Possible, not too complex but difficult to get precise time delays, especially long ones (eg 4 & 15 seconds).

Microcontroller

• Flexible, low cost solution
• Lowest parts count

Create a low-cost design for a battery operated box that has:

• a button
• a light
• a very loud hooter

When the button is pressed, the light should begin to flash, and then rapidly get faster, until it seems to be on all the time.

The hooter then sounds for two seconds, waits for four seconds, sounds for 0.4 second, waits for 15 seconds sounds for 1/10 second.

Microcontroller Implementation

Microcontrollers are tiny computers intended to be programmed to do a single job.

Atmel AT90S2343 AVR CPU

• 5 x I/O lines
• on-chip clock
• 8 bit timer
• watchdog timer
• low power/sleep modes
• 2.7-6V supply

• 1K program memory
• 128 byte data memory
• 128 bytes EEPROM

• Fast – up to 10 million instructions/second
• Cheap – ~ NZ$5 each in singles

From Digikey’s website – April 27, 2005

<table>
<thead>
<tr>
<th>Digi-Key Part Number</th>
<th>Manufacturer Part Number</th>
<th>Quantity</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT90S2343-10PI-ND</td>
<td>AT90S2343-10PI</td>
<td>1</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>2.28</td>
</tr>
</tbody>
</table>

Screecher - Mk 1

![Screecher](image)
Microcontroller – Inside vs Out

Complex internals

External connections:
• power and ground
• reset line
• 5 I/O lines

The Microcontroller Market

Quoted from http://www.genapro.com/exsum.htm

“The greatest number of its likely applications will be as a stand-alone microprocessor or controller in either the consumer or industrial areas:

Consumer: Home energy controllers, Electronic note pads, Cellular phones, Toys, Video games, Personal computer peripherals and coprocessors

Industrial: Robotics, Process controllers, Digital Signal Processing, Wired & wireless Communications, Network & systems controller/router, Automotive controllers, Defense electronics

Microcontroller Manufacturers

“These companies have a market share of 5% or more: Motorola, NEC, Hitachi, Texas Instruments, Intel, Mitsubishi, Lucent, and Philips”.

Screecher Circuit

Hooter Amplifier
needed as 2343 can’t supply enough power to turn hooter on

Power Supply & Reset

Size of Microcontroller Market

• This microcontroller market, currently worth approximately $2.5 billion, is traditionally serviced by legacy 8 and 16 bit devices, but it has seen a substantial growth in performance requirements as users demand greater flexibility, and as cost demands force the consolidation of multiple applications onto a single device.

• “The 32bit microcontroller industry blossomed in the last 5 years, quadrupling in revenues to reach $2.4 billion in 2003”.

• “Over the next five years, the market will double in size again”, said Tom Starnes, Research Vice President, Gartner.

Example – Dishwashers
adapted from
http://www.freescale.com/webapp/sps/site/application.jsp?nodeId=023Zj0TcR8bS

Home appliance controls are changing from purely mechanical to fully electronic as microcontrollers are incorporated …

Design Challenges

Cost
• appliance market is highly competitive and cost sensitive.
• high-volume market.
 => eliminating a few cents can save thousands of dollars

Flexibility - a new model can be introduced every year:
• software problems must be eliminated quickly
• requires professional development tools

Noise - a quiet appliance is a major goal
• as consumers become busier, appliances are likely to be operating simultaneously, even during night hours when electricity is least expensive.
• minimum levels of noise and vibration are desirable.

Legislation
• energy-efficient demand from energy regulations/consumers
• designed for both water & electricity efficiency

Measurement Accuracy
For maximum efficiency, it’s critical to measure:
• temperature in different interior zones of the dishwasher
• the amount of water used

Appliance Overview

Electronically controlled Washing machine

Electronic circuitry for control:
- Microcontroller
- ADCs
- Power control
- Non-volatile memory
- I/O

I/O - digital input/output signals

ADC - Analog to Digital Converter
Logic signals are true/false/high/low
Real-world signals (eg temperature) are continuous
 ➔ an ADC converts an external signal to a 8 or 10 bit number so it can be treated as a binary value

Power Control
- circuitry to convert logic signals to allow control of 230V motors, pumps …

Non-volatile Memory
- memory that doesn’t forget when the power goes off

8051-Architecture - Data Sheets

“Since its 1980 introduction, the 8051 and its derivatives have shipped about two billion units worldwide (according to DataQuest), and the production rate keeps growing, with nearly 300 million units shipped in 1996 alone. Surprisingly, these sales and longevity records were achieved with essentially no changes to the core architecture or implementation, and only minor performance speed-ups.”

Source: Computer Systems Laboratory Colloquium - 1998
The Chip that Wouldn't Die: A 20-Year Retrospective
John Wharton - Stanford University

Atmel 8051 derivative Core

AT89C2051 – 8051 Derivative

<table>
<thead>
<tr>
<th>Signal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST/VPP</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>RXD</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>TXD</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>XTAL2</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>XTAL1</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>INT0</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>INT1</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>TO</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Source: Computer Systems Laboratory Colloquium - 1998
The Chip that Wouldn't Die: A 20-Year Retrospective
John Wharton - Stanford University
Same “Core” – Many Variants

From: http://www.atmel.com/atmel/products/prod71.htm

“Atmel offers a broad range of microcontrollers based on the 8051 architecture. The product line includes MCS-51® in industry standard socket drop-in devices, In-System Programming capability, and small footprint 20-pin devices in ROMLESS, ROM, OTP & FLASH flavors.”

Different Memory/Packages
- In-System Programmable (ISP) Flash
- Reprogrammable Flash
- Small Footprint, Reprogrammable Flash
- One-Time Programmable (OTP)
- Small Footprint, One-Time Programmable (OTP)
- ROM
- Small Footprint, ROM
- ROMless

Different Markets
The MCS-51 derivatives have features added to satisfy particular markets:

- domestic appliances
- CAN Multiplexing – "in-car" local-area-network
- MP3 Applications
- Secure and Smart Card Systems
- Data Logging

Micro Applications - The Talking Toaster

It’s 3:00am. You’re hungry You stumble into the kitchen. Can you really be troubled with setting the toaster’s heat setting, or activating the toaster’s heating coils?

Of course not! That's where the Talking Toaster comes in you can simply reply by speaking your reply -- no buttons to push, dials to spin, or lights to watch.

I enrolled in the CSE 477 course at the University of Washington. For my time in the class … we built a talking toaster.

The operating instructions for the toaster are quite simple: When you want toast, ask for the toaster for some toast:

You: Toast.

Toaster: How light? Respond with either light, medium, or dark.

You: Medium.

Toaster: Using setting medium. Lowering...

Toasting starts

Toaster: Raising... done!

Adapted from: http://www.the4cs.com/~corin/cse477/toaster/

Microcontroller Applications

<table>
<thead>
<tr>
<th>Domestic Appliances</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td>CD Player</td>
</tr>
<tr>
<td>Stove</td>
<td>FM Tuner</td>
</tr>
<tr>
<td>Breadmaker</td>
<td>Fax</td>
</tr>
<tr>
<td>Toaster</td>
<td>Amplifier</td>
</tr>
<tr>
<td>TV</td>
<td>Air Conditioner</td>
</tr>
<tr>
<td>Video</td>
<td>Washing Machine</td>
</tr>
<tr>
<td>DVD player</td>
<td>Digital Camera</td>
</tr>
<tr>
<td>MP3 Player</td>
<td>Portable Phone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main CPU – Pentium /Athlon…</td>
</tr>
<tr>
<td>Keyboard</td>
</tr>
<tr>
<td>Video card</td>
</tr>
<tr>
<td>Hard disk</td>
</tr>
<tr>
<td>Modem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cellphones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
</tr>
<tr>
<td>• Engine Control – eg: mixture, microphone on block</td>
</tr>
<tr>
<td>• Anti-lock braking</td>
</tr>
<tr>
<td>• Dashboard Control</td>
</tr>
<tr>
<td>• Overall control</td>
</tr>
<tr>
<td>• Entertainment (radio/CD)</td>
</tr>
</tbody>
</table>

This has lead to the design of a network specifically for cars – the CAN networking system.

One Vendor’s Microprocessor Families

Atmel – www.atmel.com:

- 8051Architecture
- AT91ARM Thumb
- AVR 8-Bit RISC

<table>
<thead>
<tr>
<th>Automotive Control</th>
<th>Industrial Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biometrics</td>
<td>Military & Avionics</td>
</tr>
<tr>
<td>Cameras</td>
<td>Secure Microcontrollers</td>
</tr>
<tr>
<td>Phones – cellphones, cordless & wall mounted</td>
<td>Wireless Control</td>
</tr>
<tr>
<td>Internet Appliances & VoIP</td>
<td>Wireless Datacom</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multimedia Entertainment Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CD & DVD players</td>
</tr>
<tr>
<td>• DTV sets</td>
</tr>
<tr>
<td>• Video game consoles</td>
</tr>
<tr>
<td>• Direct Broadcast Satellite</td>
</tr>
<tr>
<td>• ADSL / Video gateways</td>
</tr>
<tr>
<td>• Video-on-Demand services</td>
</tr>
<tr>
<td>• Digital Terrestrial TV set top boxes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multimedia & Interface Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Image sensors</td>
</tr>
<tr>
<td>• Bluetooth technology / Bluetooth-enabled equipment</td>
</tr>
<tr>
<td>• USB</td>
</tr>
<tr>
<td>• Firewire IEEE 1394 – (really fast – like USB 2)</td>
</tr>
<tr>
<td>• Multimedia home networking for consumer electronics</td>
</tr>
</tbody>
</table>
What’s in a 20 Pin Package?

PDIP/SOIC

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
</tr>
<tr>
<td>2</td>
<td>PB7 (SCK)</td>
</tr>
<tr>
<td>3</td>
<td>PB6 (MISO)</td>
</tr>
<tr>
<td>4</td>
<td>PB5 (MOSI)</td>
</tr>
<tr>
<td>5</td>
<td>PB4</td>
</tr>
<tr>
<td>6</td>
<td>PB3 (OC1)</td>
</tr>
<tr>
<td>7</td>
<td>PB2</td>
</tr>
<tr>
<td>8</td>
<td>PB1 (AIN1)</td>
</tr>
<tr>
<td>9</td>
<td>PB0 (AIN0)</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>PD6 (ICP)</td>
</tr>
</tbody>
</table>

Microcontroller “On-Chip” features

Memory - Various sorts

I/O devices - lots

- Serial Ports
- Parallel Ports
- Analog I/O
- Timers & Counters
- PWM – pulse width modulator
 - synthetic analog from two levels by varying the on-off ratio
 - Interrupt lines direct to Pins

Support Circuitry

- On-chip Oscillator (RC, crystal, resonator)
- Watchdog timer

Memory

Microcontrollers are “fixed programmed”, so need:

- non-volatile code memory (for the program)
- data memory (for variables, temporary values …)

On-chip Program Memory

- Usually quite small – from 1K instructions up
- Various technologies
 - fixed programmed by factory – cheap
 - one-time programmable
 - Flash™ - user can reprogram (electrically)
 - Limited life – typically 1000 reprogram cycles

Data Memory

- Volatile (unless has backup battery)
- 32 – 256 bytes

EEProm Memory

- Non-volatile
- 128-2048 bytes
- slow to read/write – need special routines
- limited life – typically 100,000 write/erase cycles
Microcontroller I/O

- Most I/O is digital – quantity being measured is voltage
- Logical 0 is close to zero volts (Ground)
- Logical 1 is close to Supply voltage (often +5V)

To measure any quantities, they must be converted into voltages.

Analog to Digital Conversion is possible

Eg – an 8 bit ADC will full scale of 3 volts:
- 0 volts will result in 0
- 1.5V will result in 127
- 3V will result in 255

Generally analog conversions are avoided if possible.

Timing

Microcontrollers can execute instructions very quickly:
- Related to their clock frequency
 - not necessarily the same
- Power consumption increases with clock rate

AVR Microcontrollers – one clock cycle / instruction
- 1MHz clock => 1 million instructions per second
- 10MHz clock => 10MIPS

8051 family (original design) – 12 clock cycles / instr
- 12MHz clock => 1 million instructions/second (1MIP)

This is maximum rate, as some instructions take 2 or more cycles to execute.

How fast is this?

Human reaction time ~ 200ms (200 milli-seconds = 0.2s)
- microcontroller can execute nearly 200,000 instructions

I/O Current Capability

AA cell 500mA for one hour (500mA-H)
- 25mA for 20 hours
- 1mA for 500 hours (approx 3 weeks)

I/O pin on Microcontroller can control up to 20mA
- usually by connecting to ground - active LOW

How useful is 20mA?

- LED (light emitting diode) 1mA is visible
- 20mA is bright
- Radio (depending on volume) 10-200mA
- Small Motor 200mA-1000mA
- Torch bulb 100mA-700mA
- Hooter 150mA

Loads greater than 20mA need an Amplifier

Can use:
- a transistor
- a relay
- triac – to control 230VAC (great care is needed)

Generating Tones

Human Hearing

20 - 20,000 cycles/second (Hertz – abbrev Hz)
- heard only when young, (upper limit decreases with age)
- 20 - 12KHz for adult

Human Hearing - Peak sensitivity ~ 1500 Hz

Speech ~ 300 – 3000 Hz

Middle C on piano = 440Hz
Tone Generator for 1000Hz – 1KHz

\[\begin{array}{c|c|c}
5v & _ & _ \\
0v & _ & _ \\
_ & _ & _ \end{array} \rightarrow \text{Speaker} \]

Loop

```
set pin low
wait for 500uS    // half of 1 millisecond
set pin high
wait for 500uS    // for r1:=count downto 0 do ;
goto Loop
```

; Tone Generator
; If processor is has 12MHz clock,
; each cycle takes 1us (one microsecond)

count equ 250 ; define count=250
Tone: clrb p3.7 ; Time taken
 mov r1, #count ; 1us
 stay0: djnz r1, stay0 ; 2us x 250
 setb p3.7 ; 1us
 mov r1, #count ; 1us
 stay1: djnz r1, stay1 ; wait 500us
 sjmp Tone ; do it again

• each half cycle isn’t exactly 500uS but it’s very close,
 so frequency ~ 1000Hz

• very inefficient way to generate a tone – processor is
totally occupied – can’t do anything else.