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Abstract: FPGAs are often used as implementation platforms for real-time image 
processing applications because their structure is able to exploit spatial and 
temporal parallelism. Such parallelisation is subject to the processing mode and 
hardware constraints of the system. These constraints can force the designer to 
reformulate the algorithm. This paper presents some general techniques for 
dealing with the various constraints and efficient mappings for three types of 
image processing operations. 
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1. INTRODUCTION 

Real-time image processing is difficult to achieve on 
a serial processor. This is due to several factors such 
as the large data set represented by the image, and the 
complex operations which may need to be performed 
on the image. At real-time video rates of 25 frames 
per second a single operation performed on every 
pixel of a 768 by 576 colour image (PAL frame) 
equates to 33 million operations per second. This 
does not take into account the overhead of storing and 
retrieving pixel values. Many image processing 
applications require that several operations be 
performed on each pixel in the image resulting in a 
even large number of operations per second. 

One alternative is to use a field programmable gate 
array (FPGA). Continual growth in the size and 
functionality of FPGAs over recent years has resulted 
in an increasing interest in their use as 
implementation platforms for image processing 
applications, particularly real-time video processing 
[1]. 

An FPGA consists of a matrix of logic blocks that are 
connected by a switching network. Both the logic 
blocks and the switching network are 
reprogrammable allowing application specific 
hardware to be constructed, while at the same time 
maintaining the ability to change the functionality of 
the system with ease. As such, an FPGA offers a 
compromise between the flexibility of general 
purpose processors and the hardware-based speed of 
ASICs. Performance gains are obtained by bypassing 

the fetch-decode-execute overhead of general-
purpose processors and by exploiting the inherent 
parallelism of digital hardware. 

Parallelism in image processing algorithms exists in 
two major forms [2]: spatial parallelism and temporal 
parallelism. FPGA implementations have the 
potential to be parallel using a mixture of these two 
forms. For example, in order to exploit both forms the 
FPGA could be configured to partition the image and 
distribute the resulting sections to multiple pipelines 
all of which could process data concurrently. In 
practice, such parallelisation is subject to the 
processing mode and hardware constraints of the 
system. This in turn forces the designer to deal with 
hardware issues such as concurrency, pipelining and 
priming, which many image processing experts are 
unfamiliar with. 

To overcome this, research has focused on the 
development of high-level languages and their 
associated compilers such as in [3-5]. A common 
goal of these languages is to hide many of the low-
level details from the developer by allowing the 
compiler to automatically extract parallelism using 
optimisation techniques such as loop unrolling to 
exploit spatial parallelism and automatic pipelining to 
exploit temporal parallelism. Thus a working 
hardware design may be as simple as making a few 
syntactic modifications to an existing program, 
compiling it and downloading the resulting 
configuration file to the FPGA. This appears to be a 
perfect solution for image processing, which already 
has a large stable code base of well-defined software 
algorithms for implementing many common image 
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processing operations [6]. This also makes it easy for 
image processing experts who are used to 
programming in a software language to make the 
transition from algorithmic source code to a gate-
level representation (netlist) without any knowledge 
of the underlying hardware [7]. 

However, such an approach restricts the developer to 
the software programming ‘mindset’. Offen [8] has 
stated that the classical serial architecture is so central 
to modern computing that the architecture-algorithm 
duality is firmly skewed towards this type of 
architecture. If direct mapping of a software 
algorithm to hardware is performed, compiler 
optimisations will only improve the speed of what is 
fundamentally a sequential-based algorithm. This 
may not be the best algorithm to use for certain 
processing models on an FPGA, which could benefit 
from a completely different and more efficient 
mapping of the conceptual algorithm to hardware. 

The mapping of operations to hardware can fall into 
several categories. In some cases the mapping is 
simple, and there is little difference from a 
functionally equivalent software implementation. In 
others a data structure and caching arrangement needs 
to be implemented but apart from this the algorithm 
itself may only have minor changes from a software 
implementation. However, in some cases the standard 
algorithm developed for software implementation 
does not map efficiently to hardware because it uses 
too many resources or accesses memory in a way 
which cannot be supported. In these ‘hard’ cases the 
algorithm needs to be rewritten to meet the 
constraints imposed by the hardware.  

Manual mapping means the designer must be 
prepared to deal with the hardware constraints and the 
implications that follow. For example, the constraint 
of real-time processing introduces a number of 
additional complications. These include such issues 
as limited memory bandwidth, resource conflicts, and 
the need for pipelining.  

To help maintain better control of these constraints 
many hardware designs are still coded at the register 
transfer level (RTL). This has been corroborated 
through previous work which has shown that it is 
beneficial to maintain a data flow approach at the 
register transfer level [9,10]. The ‘better control’ is a 
function of the low-level programming model used, 
which in the software domain is analogous to 
programming in assembly language. Like assembly 
language, however, design at the RTL level becomes 
difficult and cumbersome for large and complex 
algorithms.  

The ultimate goal then is a development environment 
that automatically manages the hardware issues 
without the restrictions of a ‘software mindset’. A 
step towards this requires understanding what the 
constraints are, under what circumstances they are 
imposed, and their effect. Based on previous work 
[9,10] we have identified the following constraints: 

timing, bandwidth, and resource constraints. These 
constraints are inextricably linked and driven by the 
data rate requirements of the application as section 
two will show. This section discusses the constraints 
and their effect under different processing modes. 
Section three discusses some general techniques for 
mapping algorithms to hardware that should always 
be considered. In section four, three different classes 
of operations and their implementations are discussed 
with respect to the issues illustrated in the paper. 

2. CONSTRAINTS 

The constraints outlined above manifest themselves 
in different ways depending on the processing model. 
We believe there are three modes: stream, offline and 
hybrid processing.  

In stream processing, data is received from the input 
device in a raster nature at video rates. Memory 
bandwidth constraints dictate that as much processing 
as possible be performed as the data arrives.  

In offline processing there is no timing constraint. 
This allows random access to memory containing the 
image data. This mode is the easiest to program, as a 
direct mapping from a software algorithm can be 
used. The speed of execution in most cases is limited 
in by the memory access speed.  

The hybrid case is a mixture of stream and offline 
processing. In this case, the timing constraint is 
relaxed so the image is captured at a slower rate. 
While the image is streamed into a frame buffer it can 
be processed, such as extracting a region of interest. 
This region of interest can then be processed by an 
offline stage which would allow random access to the 
region’s elements.  

2.1. Timing Constraints 

If there is no requirement on processing time then the 
constraint on timing is relaxed and the system can 
revert to offline processing. This is often the result of 
a direct mapping from a software algorithm. The 
constraint on bandwidth is also eliminated because 
random access to memory is possible and desired 
values in memory can be obtained over a number of 
clock cycles with buffering between cycles. Offline 
processing in hardware therefore closely resembles 
the software programming paradigm; the developer 
need not worry about constraints to any great extent. 

This is the approach taken by languages that map 
software algorithms to hardware. The goal then, is to 
produce hardware that processes the input data as fast 
as possible given various automatic and manual 
optimisation techniques. The view here is that any 
speedup over an equivalent implementation on a 
serial processor is useful. This is the approach offered 
by [3]. 
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In contrast to this, when an image processing 
application demands real-time processing at video 
rates, the timing constraints become crucial. For 
example, video display generation has deadlines on 
the order of one pixel every 40 ns (VGA output). 
Stream processing constrains the design into 
performing all of the required calculations for each 
pixel at the pixel clock rate. Producing one pixel 
every 40 ns for non-trivial applications, such as lens 
distortion correction [10] is difficult because for each 
pixel complex expressions must be evaluated. These 
can introduce significant propagation delay, which 
may easily exceed a single pixel clock cycle. A 
pipelined approach is thus needed that accepts an 
input pixel value from the stream and outputs a 
processed pixel value every clock cycle with several 
clock cycles of latency, equal to the number of 
pipeline stages, between the input and output. This 
allows several pipeline stages each for the evaluation 
of complex expressions and functions. 

Pipelining is a relatively easy optimisation to 
perform, since it does not require that the algorithm 
be modified. Given enough resources, any desired 
throughput can be achieved by pipelining, at the 
expense of added latency. A number of higher-level 
languages already offer automatic pipelining 
capabilities [3,5]. In some cases real-time video 
processing rates are achieved or exceeded using 
automatic mapping to hardware but there is no 
guarantee that compiler optimisations will meet the 
explicit timing constraints demanded by video rate 
processing. This is not the focus of such an approach. 

Under stream processing, some operations require 
that the image be partly or wholly buffered because 
the order that the pixels are required for processing 
does not correspond directly to the raster order in 
which they are input. This is true for spatial 
operations and local filter operations. Consequently 
developers are forced to deal with resource and 
bandwidth constraints. 

2.2. Bandwidth Constraints 

Frame buffering requires large amounts of memory. 
The size of the frame buffer depends on the transform 
itself. In the worst case (rotation by 90º, for example) 
the whole image must be buffered. A single 24-bit (8-
bits per colour channel) colour image with 768 by 
576 pixels requires 1.2 MB of memory. FPGAs have 
very limited amounts of on-chip RAM (Xilinx calls 
this BlockRAM). The logic blocks themselves can be 
configured to act like RAM (termed distributed 
RAM) but this is usually an inefficient use of the 
logic blocks.  

Typically some sort of off-chip memory is used but 
this only allows a single access to the frame buffer 
per clock cycle, which can be a problem for the many 
operations that require simultaneous access to more 
than one pixel from the input image. For example, 
bilinear interpolation (see [9] for more details) 
requires simultaneous access to four pixels from the 

input image. This will be on a per clock cycle basis if 
real-time processing constraints are imposed. 

Possible alternatives to deal with this problem are the 
use multiport RAM, multiple RAM banks in parallel 
or using a faster RAM clock to read multiple 
locations in a single pixel clock cycle. These 
alternatives all have significant disadvantages. 
Multiport RAM is specialized and expensive. The use 
of multiple banks is clumsy because the added 
redundancy is expensive in both cost and space. 
Finally, using a faster RAM clock requires expensive 
high speed memory and introduces synchronization 
issues. 

One solution that avoids all these complications is to 
cache data read from the frame buffer that is likely to 
be used in subsequent calculations. Creating this data 
structure introduces additional complications; the 
need for mechanisms that stall, add to and remove 
data from the buffer. Managing bandwidth constraints 
often changes the way one must conceptually view 
and approach the algorithm as section 4.2 will 
illustrate. 

2.3. Resource Constraints 

Resource contention arises due to the finite number of 
available resources in the system such as local and 
off-chip RAM or other function blocks implemented 
on the FPGA. If there are a number of concurrent 
processes that need access to a particular resource in a 
given clock cycle then some sort of scheduling must 
be performed. The worst case involves redesigning 
the underlying algorithm. Care must also be taken to 
ensure that concurrent processes avoid writing to the 
same register during a given clock cycle. 

Pipelining results in an increase in logic block usage. 
This is caused by the need to construct pipeline stages 
and registers rather than being able to reuse the small 
number of sequential computing elements (ALU and 
registers), as can be done with offline processing. Flip 
flops introduced by pipelining typically incur a 
minimum of additional area on an FPGA, as they are 
mapped onto unused flip flops within logic blocks 
that are already used for implementing other 
combinatorial logic in the design [11].  

While the impact of pipeline registers on logic block 
usage will be minimal, care must still be taken to 
make efficient use of the available logic blocks. 
Implementations of more complex arithmetic 
operations such as squares and square roots consume 
large resources and also increase combinatorial 
delays if not pipelined. These are especially important 
consideration for designs using small low cost 
FPGAs. 

3. GENERAL TECHNIQUES 

There are a number of techniques for dealing with 
expressions that inefficiently map to hardware. 



121 

Simplistically, where it is possible, division and 
multiplication by powers of two should be used. This 
is equivalent to a shift left or right. In hardware, 
multiplication or division by a constant power of two 
may be achieved by simply rewiring the output of a 
logic block. For more complex expressions, such as 
square roots or multiplying and dividing by an 
arbitrary number, look-up tables (LUT) and raster-
based incremental methods can be used. 

3.1. Look-up Tables 

In its simplest form the LUT method involves pre-
calculating the result of an expression or function for 
various input combinations that represent a range of 
values. Upon execution the resulting values are 
loaded into either local memory on the FPGA (in 
BlockRAM) or in off-chip memory. This step is 
usually performed offline but another possibility is 
when spare clock cycles are available, such as in the 
vertical blanking period of the display. This allows 
the LUT to be dynamically updated during execution. 

During execution the LUT, evaluates the expression, 
by retrieving the table entry that corresponds to the 
current input combination (memory address). The 
access time is constant for all input combinations. 
There are a number of considerations that must be 
made before using a LUT. The amount of resources 
(typically limited BlockRAM) and delays in routing 
and LUT access time must be balanced against those 
of building hardware for run-time evaluation. LUTs 
also have limited access per clock cycle, typically one 
or two read accesses. Consequently, if many 
processes wish to access the data simultaneously, 
more than one LUT is needed. 

The accuracy of a LUT is related to its size. For 
example, if there are 256 elements in the LUT, the 
expression or function can only be evaluated to an 
input of 8 bits. To improve the accuracy, linear 
interpolation between adjacent table entries can be 
used. This has an added cost in terms of logic block 
usage and in the number of clock cycles needed for 
evaluation.  

In [10] a 256 element LUT was used with linear 
interpolation. In this paper, both the required table 
entry and the next entry are retrieved using the most 
significant 8 bits of 16-bit operands. The least 
significant 8 bits of the operand are used to 
interpolate between the two table entries. This 
improved the resolution to approximately 15 bits. 

3.2. Raster-based Methods 

This technique, also used in [10], reduces the amount 
of hardware required by exploiting how data is 
presented in the stream processing mode. When an 
image is read in a raster fashion from top left to 
bottom right the column ( x ) and line ( y ) changes 
can be used to incrementally update the running total 

of an expression. For example, to calculate 2x or 2y
without multiplication equation (1) can be used 

( )2 21 2 1z z z+ = + + (1) 

This uses few resources but cannot be implemented 
when 2x or 2y is needed randomly. 

4. ALGORITHM MAPPING 

Algorithms for image processing are normally 
classified into one of three levels: low, intermediate 
or high. Low-level algorithms operate on individual 
pixels or neighbourhoods. Intermediate-level 
algorithms either convert pixel data into a different 
representation, such as a histogram, coordinate or 
chain code, or operate on one of these higher 
representations. High-level algorithms aim to extract 
meaning from the image using information from the 
other levels. This could be in the form of rejecting a 
component or identifying where an object is within an 
image. 

When moving from low to the high-level 
representations there is a corresponding decrease in 
exploitable parallelism due to the change from pixel 
data to more descriptive representations. However 
there is also a reduction in the amount of data that 
must be processed, allowing more time to do the 
processing.  

Due to their structure, FPGAs are most appropriate 
for use with computationally intensive tasks which 
form the vast majority of low and intermediate-level 
operations. The large data sets and regular repetitive 
nature of the operations can be exploited. For this 
reason it has been traditional in many systems for the 
FPGA to handle the low-level operations and then 
pass the processed data to a microprocessor which 
then executes the high-level operations. With 
increasing FPGA size, it is now possible to 
implement processor cores on the reconfigurable 
fabric, which means the FPGA can form the core of 
the system. 

4.1. Point operations 

Point operations are a class of transformation 
operations where each output pixel’s value depends 
only upon the value of the corresponding input pixel 
[12]. The mapping of point operations to hardware 
can be achieved by simply passing the image though 
a hardware function block, that is designed to 
perform the required point operation. For more 
complex functions LUTs can be used.  

Stream processing essentially converts spatial 
parallelism into temporal parallelism. Raster-based 
presentation of the data stream results in the need to 
perform only one memory access per clock cycle. 
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4.2. Window operations 

A more complex class of low-level operations are 
local filters. Conceptually, each pixel in the output 
image is produced by sliding an N M× window over 
the input image and computing an operation 
according to the input pixels under the window and 
the chosen window operator. The result is a pixel 
value that is assigned to the centre of the window in 
the output image, as shown below in Figure 1. 

Input
window

Output
pixel

Path of
window

x x

yy

Window
Operator

Figure 1. Conceptual example of window filtering 

For processing purposes, the straightforward 
approach is to store the entire input image into a 
frame buffer, accessing the neighbourhood pixels and 
applying the function as needed to produce the output 
image. If real-time processing of the video stream is 
required N M× pixel values are needed to perform 
the calculations each time the window is moved and 
each pixel in the image is read up to N M× times. 
Memory bandwidth constraints make obtaining all 
these pixels each clock cycle impossible unless some 
form of local caching is performed. Input data from 
the previous 1N − rows can be cached using a shift 
register (or circular memory buffer) for when the 
window is scanned along subsequent lines. This leads 
to the block diagram shown below in Figure 2. 

Row buffer

(width - M)

Row buffer
(width - M)

NxM Window
Frame buffer

memory

Counter

Window operator

Capture source

Output pixel
 

Figure 2. Block diagram for hardware 
implementation of window filtering 

Instead of sliding the window across the image, the 
above implementation now feeds the image through 
the window. 

Introducing the row buffer data structures adds 
additional complications. With the use of both 
caching and pipelining there needs to be a mechanism 

for adding to the row buffer and for priming, stalling 
and flushing the pipeline. This is required when 
operating on video data, due to the horizontal 
blanking between lines and the vertical blanking 
between frames. If either the buffer or the pipeline 
operated during the blanking periods the results for 
following pixels would be incorrect due to invalid 
data being written to them. This requires the designer 
to stop entering data into the row buffers and to stall 
the pipeline while a blanking period occurs.  

Another complication occurs when the window 
extends outside the image boundary. There are 
several options for dealing with this; the simplest is to 
assume one row wraps into the next. A better option 
is to replicate the edge pixels of the closest border. 
Such image padding can be considered as a special 
case of pipeline priming. When a new frame is 
received the first line is pre-loaded into the row 
buffer the required number of times for the given 
window size. Before processing a new row the first 
pixels are also pre-loaded the required number of 
times, as is the last pixel of the line and the last line. 

4.3. Global operations 

Intermediate level operations are often more difficult 
to implement on FPGAs as they convert pixel data to 
higher-level representations such as chain codes or 
regions of interest. These algorithms often require 
random access to memory that cannot easily be 
achieved in stream processing mode. The algorithm 
must be rewritten without the requirement of random 
access to memory using either single or multiple 
passes through the image. Chain coding is an 
example of an algorithm for which this must be 
performed.  

A chain code defines the boundary of an object. The 
‘standard’ software approach is to scan the image 
until an unprocessed edge is encountered.  From this 
point, the direction to the next edge pixel is added to 
the chain code and tracking continues until the whole 
contour is defined. Tracking the edge therefore 
requires random access to memory. 

The algorithm can be reformulated for a direct raster 
implementation by keeping track of multiple edges 
while raster scanning [13]. This is a more efficient 
mapping to hardware and needs only a single pass 
through the image. 

5. SUMMARY 

FPGAs are often used as implementation platforms 
for real-time image processing applications because 
their structure can exploit spatial and temporal 
parallelism. Such parallelisation is subject to the 
processing mode and hardware constraints of the 
system. 

Using high-level languages and compilers to hide the 
constraints and automatically extract parallelism from 
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the code does not always produce an efficient 
mapping to hardware. The code is usually adapted 
from a software implementation and thus has the 
disadvantage that the resulting implementation is 
based fundamentally on a serial algorithm. 

Manual mapping removes the ‘software mindset’ 
restriction but instead the designer must now deal 
more closely with timing, resource and bandwidth 
constraints, which complicate the mapping process. 

Timing or processing constraints can be met using 
pipelining. This only adds to latency rather than 
changing the algorithm, which is why automated 
pipelining is possible. Meeting bandwidth constraints 
on the other hand is more difficult because the 
underlying algorithm may need to be completely 
redesigned, an impossible task for a compiler. 

This paper presented some general techniques for 
evaluating complex expressions to help deal with 
resource constraints by reducing logic block usage.  
The mapping of three different types of operations 
was discussed in relation to the hardware constraints.  

Implementing any operation under stream processing 
mode requires that for every clock cycle (1) the 
required pixel data can be accessed by the processing 
block and (2) the pixel data is presented correctly to 
the processing block. 

For point operations, both requirements are easily met 
and the resulting mapping differs little from a 
functionally equivalent software implementation. 
Window operations require local caching and control 
mechanisms but the underlying algorithm remains the 
same. Global operations such as chain coding require 
random access to memory and cannot be easily 
implemented under stream processing modes. This 
forces the designer to reformulate the algorithm.  
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