
118

Implementing Image Processing Algorithms on FPGAs

C. T. Johnston, K. T. Gribbon, D. G. Bailey

Institute of Information Sciences & Technology, Massey University
Private Bag 11-222, Palmerston North, NEW ZEALAND

C.T.Johnston@massey.ac.nz, K.Gribbon@massey.ac.nz, D.G.Bailey@massey.ac.nz

Abstract: FPGAs are often used as implementation platforms for real-time image
processing applications because their structure is able to exploit spatial and
temporal parallelism. Such parallelisation is subject to the processing mode and
hardware constraints of the system. These constraints can force the designer to
reformulate the algorithm. This paper presents some general techniques for
dealing with the various constraints and efficient mappings for three types of
image processing operations.

Keywords: FPGA, image processing, algorithms, operations

1. INTRODUCTION

Real-time image processing is difficult to achieve on
a serial processor. This is due to several factors such
as the large data set represented by the image, and the
complex operations which may need to be performed
on the image. At real-time video rates of 25 frames
per second a single operation performed on every
pixel of a 768 by 576 colour image (PAL frame)
equates to 33 million operations per second. This
does not take into account the overhead of storing and
retrieving pixel values. Many image processing
applications require that several operations be
performed on each pixel in the image resulting in a
even large number of operations per second.

One alternative is to use a field programmable gate
array (FPGA). Continual growth in the size and
functionality of FPGAs over recent years has resulted
in an increasing interest in their use as
implementation platforms for image processing
applications, particularly real-time video processing
[1].

An FPGA consists of a matrix of logic blocks that are
connected by a switching network. Both the logic
blocks and the switching network are
reprogrammable allowing application specific
hardware to be constructed, while at the same time
maintaining the ability to change the functionality of
the system with ease. As such, an FPGA offers a
compromise between the flexibility of general
purpose processors and the hardware-based speed of
ASICs. Performance gains are obtained by bypassing

the fetch-decode-execute overhead of general-
purpose processors and by exploiting the inherent
parallelism of digital hardware.

Parallelism in image processing algorithms exists in
two major forms [2]: spatial parallelism and temporal
parallelism. FPGA implementations have the
potential to be parallel using a mixture of these two
forms. For example, in order to exploit both forms the
FPGA could be configured to partition the image and
distribute the resulting sections to multiple pipelines
all of which could process data concurrently. In
practice, such parallelisation is subject to the
processing mode and hardware constraints of the
system. This in turn forces the designer to deal with
hardware issues such as concurrency, pipelining and
priming, which many image processing experts are
unfamiliar with.

To overcome this, research has focused on the
development of high-level languages and their
associated compilers such as in [3-5]. A common
goal of these languages is to hide many of the low-
level details from the developer by allowing the
compiler to automatically extract parallelism using
optimisation techniques such as loop unrolling to
exploit spatial parallelism and automatic pipelining to
exploit temporal parallelism. Thus a working
hardware design may be as simple as making a few
syntactic modifications to an existing program,
compiling it and downloading the resulting
configuration file to the FPGA. This appears to be a
perfect solution for image processing, which already
has a large stable code base of well-defined software
algorithms for implementing many common image

119

processing operations [6]. This also makes it easy for
image processing experts who are used to
programming in a software language to make the
transition from algorithmic source code to a gate-
level representation (netlist) without any knowledge
of the underlying hardware [7].

However, such an approach restricts the developer to
the software programming ‘mindset’. Offen [8] has
stated that the classical serial architecture is so central
to modern computing that the architecture-algorithm
duality is firmly skewed towards this type of
architecture. If direct mapping of a software
algorithm to hardware is performed, compiler
optimisations will only improve the speed of what is
fundamentally a sequential-based algorithm. This
may not be the best algorithm to use for certain
processing models on an FPGA, which could benefit
from a completely different and more efficient
mapping of the conceptual algorithm to hardware.

The mapping of operations to hardware can fall into
several categories. In some cases the mapping is
simple, and there is little difference from a
functionally equivalent software implementation. In
others a data structure and caching arrangement needs
to be implemented but apart from this the algorithm
itself may only have minor changes from a software
implementation. However, in some cases the standard
algorithm developed for software implementation
does not map efficiently to hardware because it uses
too many resources or accesses memory in a way
which cannot be supported. In these ‘hard’ cases the
algorithm needs to be rewritten to meet the
constraints imposed by the hardware.

Manual mapping means the designer must be
prepared to deal with the hardware constraints and the
implications that follow. For example, the constraint
of real-time processing introduces a number of
additional complications. These include such issues
as limited memory bandwidth, resource conflicts, and
the need for pipelining.

To help maintain better control of these constraints
many hardware designs are still coded at the register
transfer level (RTL). This has been corroborated
through previous work which has shown that it is
beneficial to maintain a data flow approach at the
register transfer level [9,10]. The ‘better control’ is a
function of the low-level programming model used,
which in the software domain is analogous to
programming in assembly language. Like assembly
language, however, design at the RTL level becomes
difficult and cumbersome for large and complex
algorithms.

The ultimate goal then is a development environment
that automatically manages the hardware issues
without the restrictions of a ‘software mindset’. A
step towards this requires understanding what the
constraints are, under what circumstances they are
imposed, and their effect. Based on previous work
[9,10] we have identified the following constraints:

timing, bandwidth, and resource constraints. These
constraints are inextricably linked and driven by the
data rate requirements of the application as section
two will show. This section discusses the constraints
and their effect under different processing modes.
Section three discusses some general techniques for
mapping algorithms to hardware that should always
be considered. In section four, three different classes
of operations and their implementations are discussed
with respect to the issues illustrated in the paper.

2. CONSTRAINTS

The constraints outlined above manifest themselves
in different ways depending on the processing model.
We believe there are three modes: stream, offline and
hybrid processing.

In stream processing, data is received from the input
device in a raster nature at video rates. Memory
bandwidth constraints dictate that as much processing
as possible be performed as the data arrives.

In offline processing there is no timing constraint.
This allows random access to memory containing the
image data. This mode is the easiest to program, as a
direct mapping from a software algorithm can be
used. The speed of execution in most cases is limited
in by the memory access speed.

The hybrid case is a mixture of stream and offline
processing. In this case, the timing constraint is
relaxed so the image is captured at a slower rate.
While the image is streamed into a frame buffer it can
be processed, such as extracting a region of interest.
This region of interest can then be processed by an
offline stage which would allow random access to the
region’s elements.

2.1. Timing Constraints

If there is no requirement on processing time then the
constraint on timing is relaxed and the system can
revert to offline processing. This is often the result of
a direct mapping from a software algorithm. The
constraint on bandwidth is also eliminated because
random access to memory is possible and desired
values in memory can be obtained over a number of
clock cycles with buffering between cycles. Offline
processing in hardware therefore closely resembles
the software programming paradigm; the developer
need not worry about constraints to any great extent.

This is the approach taken by languages that map
software algorithms to hardware. The goal then, is to
produce hardware that processes the input data as fast
as possible given various automatic and manual
optimisation techniques. The view here is that any
speedup over an equivalent implementation on a
serial processor is useful. This is the approach offered
by [3].

120

In contrast to this, when an image processing
application demands real-time processing at video
rates, the timing constraints become crucial. For
example, video display generation has deadlines on
the order of one pixel every 40 ns (VGA output).
Stream processing constrains the design into
performing all of the required calculations for each
pixel at the pixel clock rate. Producing one pixel
every 40 ns for non-trivial applications, such as lens
distortion correction [10] is difficult because for each
pixel complex expressions must be evaluated. These
can introduce significant propagation delay, which
may easily exceed a single pixel clock cycle. A
pipelined approach is thus needed that accepts an
input pixel value from the stream and outputs a
processed pixel value every clock cycle with several
clock cycles of latency, equal to the number of
pipeline stages, between the input and output. This
allows several pipeline stages each for the evaluation
of complex expressions and functions.

Pipelining is a relatively easy optimisation to
perform, since it does not require that the algorithm
be modified. Given enough resources, any desired
throughput can be achieved by pipelining, at the
expense of added latency. A number of higher-level
languages already offer automatic pipelining
capabilities [3,5]. In some cases real-time video
processing rates are achieved or exceeded using
automatic mapping to hardware but there is no
guarantee that compiler optimisations will meet the
explicit timing constraints demanded by video rate
processing. This is not the focus of such an approach.

Under stream processing, some operations require
that the image be partly or wholly buffered because
the order that the pixels are required for processing
does not correspond directly to the raster order in
which they are input. This is true for spatial
operations and local filter operations. Consequently
developers are forced to deal with resource and
bandwidth constraints.

2.2. Bandwidth Constraints

Frame buffering requires large amounts of memory.
The size of the frame buffer depends on the transform
itself. In the worst case (rotation by 90º, for example)
the whole image must be buffered. A single 24-bit (8-
bits per colour channel) colour image with 768 by
576 pixels requires 1.2 MB of memory. FPGAs have
very limited amounts of on-chip RAM (Xilinx calls
this BlockRAM). The logic blocks themselves can be
configured to act like RAM (termed distributed
RAM) but this is usually an inefficient use of the
logic blocks.

Typically some sort of off-chip memory is used but
this only allows a single access to the frame buffer
per clock cycle, which can be a problem for the many
operations that require simultaneous access to more
than one pixel from the input image. For example,
bilinear interpolation (see [9] for more details)
requires simultaneous access to four pixels from the

input image. This will be on a per clock cycle basis if
real-time processing constraints are imposed.

Possible alternatives to deal with this problem are the
use multiport RAM, multiple RAM banks in parallel
or using a faster RAM clock to read multiple
locations in a single pixel clock cycle. These
alternatives all have significant disadvantages.
Multiport RAM is specialized and expensive. The use
of multiple banks is clumsy because the added
redundancy is expensive in both cost and space.
Finally, using a faster RAM clock requires expensive
high speed memory and introduces synchronization
issues.

One solution that avoids all these complications is to
cache data read from the frame buffer that is likely to
be used in subsequent calculations. Creating this data
structure introduces additional complications; the
need for mechanisms that stall, add to and remove
data from the buffer. Managing bandwidth constraints
often changes the way one must conceptually view
and approach the algorithm as section 4.2 will
illustrate.

2.3. Resource Constraints

Resource contention arises due to the finite number of
available resources in the system such as local and
off-chip RAM or other function blocks implemented
on the FPGA. If there are a number of concurrent
processes that need access to a particular resource in a
given clock cycle then some sort of scheduling must
be performed. The worst case involves redesigning
the underlying algorithm. Care must also be taken to
ensure that concurrent processes avoid writing to the
same register during a given clock cycle.

Pipelining results in an increase in logic block usage.
This is caused by the need to construct pipeline stages
and registers rather than being able to reuse the small
number of sequential computing elements (ALU and
registers), as can be done with offline processing. Flip
flops introduced by pipelining typically incur a
minimum of additional area on an FPGA, as they are
mapped onto unused flip flops within logic blocks
that are already used for implementing other
combinatorial logic in the design [11].

While the impact of pipeline registers on logic block
usage will be minimal, care must still be taken to
make efficient use of the available logic blocks.
Implementations of more complex arithmetic
operations such as squares and square roots consume
large resources and also increase combinatorial
delays if not pipelined. These are especially important
consideration for designs using small low cost
FPGAs.

3. GENERAL TECHNIQUES

There are a number of techniques for dealing with
expressions that inefficiently map to hardware.

121

Simplistically, where it is possible, division and
multiplication by powers of two should be used. This
is equivalent to a shift left or right. In hardware,
multiplication or division by a constant power of two
may be achieved by simply rewiring the output of a
logic block. For more complex expressions, such as
square roots or multiplying and dividing by an
arbitrary number, look-up tables (LUT) and raster-
based incremental methods can be used.

3.1. Look-up Tables

In its simplest form the LUT method involves pre-
calculating the result of an expression or function for
various input combinations that represent a range of
values. Upon execution the resulting values are
loaded into either local memory on the FPGA (in
BlockRAM) or in off-chip memory. This step is
usually performed offline but another possibility is
when spare clock cycles are available, such as in the
vertical blanking period of the display. This allows
the LUT to be dynamically updated during execution.

During execution the LUT, evaluates the expression,
by retrieving the table entry that corresponds to the
current input combination (memory address). The
access time is constant for all input combinations.
There are a number of considerations that must be
made before using a LUT. The amount of resources
(typically limited BlockRAM) and delays in routing
and LUT access time must be balanced against those
of building hardware for run-time evaluation. LUTs
also have limited access per clock cycle, typically one
or two read accesses. Consequently, if many
processes wish to access the data simultaneously,
more than one LUT is needed.

The accuracy of a LUT is related to its size. For
example, if there are 256 elements in the LUT, the
expression or function can only be evaluated to an
input of 8 bits. To improve the accuracy, linear
interpolation between adjacent table entries can be
used. This has an added cost in terms of logic block
usage and in the number of clock cycles needed for
evaluation.

In [10] a 256 element LUT was used with linear
interpolation. In this paper, both the required table
entry and the next entry are retrieved using the most
significant 8 bits of 16-bit operands. The least
significant 8 bits of the operand are used to
interpolate between the two table entries. This
improved the resolution to approximately 15 bits.

3.2. Raster-based Methods

This technique, also used in [10], reduces the amount
of hardware required by exploiting how data is
presented in the stream processing mode. When an
image is read in a raster fashion from top left to
bottom right the column (x) and line (y) changes
can be used to incrementally update the running total

of an expression. For example, to calculate 2x or 2y
without multiplication equation (1) can be used

()2 21 2 1z z z+ = + + (1)

This uses few resources but cannot be implemented
when 2x or 2y is needed randomly.

4. ALGORITHM MAPPING

Algorithms for image processing are normally
classified into one of three levels: low, intermediate
or high. Low-level algorithms operate on individual
pixels or neighbourhoods. Intermediate-level
algorithms either convert pixel data into a different
representation, such as a histogram, coordinate or
chain code, or operate on one of these higher
representations. High-level algorithms aim to extract
meaning from the image using information from the
other levels. This could be in the form of rejecting a
component or identifying where an object is within an
image.

When moving from low to the high-level
representations there is a corresponding decrease in
exploitable parallelism due to the change from pixel
data to more descriptive representations. However
there is also a reduction in the amount of data that
must be processed, allowing more time to do the
processing.

Due to their structure, FPGAs are most appropriate
for use with computationally intensive tasks which
form the vast majority of low and intermediate-level
operations. The large data sets and regular repetitive
nature of the operations can be exploited. For this
reason it has been traditional in many systems for the
FPGA to handle the low-level operations and then
pass the processed data to a microprocessor which
then executes the high-level operations. With
increasing FPGA size, it is now possible to
implement processor cores on the reconfigurable
fabric, which means the FPGA can form the core of
the system.

4.1. Point operations

Point operations are a class of transformation
operations where each output pixel’s value depends
only upon the value of the corresponding input pixel
[12]. The mapping of point operations to hardware
can be achieved by simply passing the image though
a hardware function block, that is designed to
perform the required point operation. For more
complex functions LUTs can be used.

Stream processing essentially converts spatial
parallelism into temporal parallelism. Raster-based
presentation of the data stream results in the need to
perform only one memory access per clock cycle.

122

4.2. Window operations

A more complex class of low-level operations are
local filters. Conceptually, each pixel in the output
image is produced by sliding an N M× window over
the input image and computing an operation
according to the input pixels under the window and
the chosen window operator. The result is a pixel
value that is assigned to the centre of the window in
the output image, as shown below in Figure 1.

Input
window

Output
pixel

Path of
window

x x

yy

Window
Operator

Figure 1. Conceptual example of window filtering

For processing purposes, the straightforward
approach is to store the entire input image into a
frame buffer, accessing the neighbourhood pixels and
applying the function as needed to produce the output
image. If real-time processing of the video stream is
required N M× pixel values are needed to perform
the calculations each time the window is moved and
each pixel in the image is read up to N M× times.
Memory bandwidth constraints make obtaining all
these pixels each clock cycle impossible unless some
form of local caching is performed. Input data from
the previous 1N − rows can be cached using a shift
register (or circular memory buffer) for when the
window is scanned along subsequent lines. This leads
to the block diagram shown below in Figure 2.

Row buffer

(width - M)

Row buffer
(width - M)

NxM Window
Frame buffer

memory

Counter

Window operator

Capture source

Output pixel

Figure 2. Block diagram for hardware
implementation of window filtering

Instead of sliding the window across the image, the
above implementation now feeds the image through
the window.

Introducing the row buffer data structures adds
additional complications. With the use of both
caching and pipelining there needs to be a mechanism

for adding to the row buffer and for priming, stalling
and flushing the pipeline. This is required when
operating on video data, due to the horizontal
blanking between lines and the vertical blanking
between frames. If either the buffer or the pipeline
operated during the blanking periods the results for
following pixels would be incorrect due to invalid
data being written to them. This requires the designer
to stop entering data into the row buffers and to stall
the pipeline while a blanking period occurs.

Another complication occurs when the window
extends outside the image boundary. There are
several options for dealing with this; the simplest is to
assume one row wraps into the next. A better option
is to replicate the edge pixels of the closest border.
Such image padding can be considered as a special
case of pipeline priming. When a new frame is
received the first line is pre-loaded into the row
buffer the required number of times for the given
window size. Before processing a new row the first
pixels are also pre-loaded the required number of
times, as is the last pixel of the line and the last line.

4.3. Global operations

Intermediate level operations are often more difficult
to implement on FPGAs as they convert pixel data to
higher-level representations such as chain codes or
regions of interest. These algorithms often require
random access to memory that cannot easily be
achieved in stream processing mode. The algorithm
must be rewritten without the requirement of random
access to memory using either single or multiple
passes through the image. Chain coding is an
example of an algorithm for which this must be
performed.

A chain code defines the boundary of an object. The
‘standard’ software approach is to scan the image
until an unprocessed edge is encountered. From this
point, the direction to the next edge pixel is added to
the chain code and tracking continues until the whole
contour is defined. Tracking the edge therefore
requires random access to memory.

The algorithm can be reformulated for a direct raster
implementation by keeping track of multiple edges
while raster scanning [13]. This is a more efficient
mapping to hardware and needs only a single pass
through the image.

5. SUMMARY

FPGAs are often used as implementation platforms
for real-time image processing applications because
their structure can exploit spatial and temporal
parallelism. Such parallelisation is subject to the
processing mode and hardware constraints of the
system.

Using high-level languages and compilers to hide the
constraints and automatically extract parallelism from

123

the code does not always produce an efficient
mapping to hardware. The code is usually adapted
from a software implementation and thus has the
disadvantage that the resulting implementation is
based fundamentally on a serial algorithm.

Manual mapping removes the ‘software mindset’
restriction but instead the designer must now deal
more closely with timing, resource and bandwidth
constraints, which complicate the mapping process.

Timing or processing constraints can be met using
pipelining. This only adds to latency rather than
changing the algorithm, which is why automated
pipelining is possible. Meeting bandwidth constraints
on the other hand is more difficult because the
underlying algorithm may need to be completely
redesigned, an impossible task for a compiler.

This paper presented some general techniques for
evaluating complex expressions to help deal with
resource constraints by reducing logic block usage.
The mapping of three different types of operations
was discussed in relation to the hardware constraints.

Implementing any operation under stream processing
mode requires that for every clock cycle (1) the
required pixel data can be accessed by the processing
block and (2) the pixel data is presented correctly to
the processing block.

For point operations, both requirements are easily met
and the resulting mapping differs little from a
functionally equivalent software implementation.
Window operations require local caching and control
mechanisms but the underlying algorithm remains the
same. Global operations such as chain coding require
random access to memory and cannot be easily
implemented under stream processing modes. This
forces the designer to reformulate the algorithm.

6. ACKNOWLEDGEMENTS

The authors would like to acknowledge the Celoxica
University Programme for generously providing the
DK2 Design Suite.

7. REFERENCES

[1] Hutchings, B. and Villasenor, J., The Flexibility
of Configurable Computing IEEE Signal
Processing Magazine, vol. 15, pp. 67-84, Sep,
1998.

[2] Downton, A. and Crookes, D., Parallel
Architectures for Image Processing Electronics
& Communication Engineering Journal, vol.
10, pp. 139-151, Jun, 1998.

[3] Najjar, W. A., Böhm, W., Draper, B. A.,
Hammes, J., Rinker, R., Beveridge, J. R.,
Chawathe, M., and Ross, C., High-level
language abstraction for reconfigurable
computing IEEE Computer, vol. 36, pp. 63-69,
Aug, 2003.

[4] Haldar, M., Nayak, A., Choudhary, A., and
Banerjee, P., "A system for synthesizing
optimized FPGA hardware from MATLAB ,"
Proceedings of the 2001 IEEE/ACM
international conference on Computer-aided
design, San Jose, California, pp. 314-319, 2001.

[5] Crookes, D., Benkrid, K., Bouridane, A.,
Alotaibi, K., and Benkrid, A., Design and
Implementation of a High Level Programming
Environment for Fpga-Based Image Processing
IEE Proceedings-Vision Image and Signal
Processing, vol. 147, pp. 377-384, Aug, 2000.

[6] Webb, J. A., Steps toward architecture-
independent image processing IEEE Computer,
vol. 25, no. 2, pp. 21-31, 1992.

[7] Alston, I. and Madahar, B., From C to netlists:
hardware engineering for software engineers?
Electronics & Communication Engineering
Journal, vol. pp. 165-173, Aug, 2002.

[8] Offen, R. J. VLSI Image Processing, London:
Collins, 1985.

[9] Gribbon, K. T. and Bailey, D. G., "A Novel
Approach to Real-time Bilinear Interpolation,"
Second IEEE International Workshop on
Electronic Design, Test and Applications, Perth,
Australia, pp. 126, Jan. 2004.

[10] Gribbon, K. T., Johnston, C. T., and Bailey, D.
G., "A Real-time FPGA Implementation of a
Lens Distortion Correction Algorithm with
Bilinear Interpolation," Proceedings of the
Image and Vision Computing New Zealand
Conference 2003, Massey University,
Palmerston North, New Zealand, pp. 408-413,
Nov. 2003.

[11] Xilinx, Inc. Xilinx 4 Software Manuals:
Libraries Guide. 2002.

[12] Castleman, K. R. Digital Image Processing,
Upper Saddle River, New Jersey: Prentice-Hall,
1996.

[13] Zingaretti, P., Gasparroni, M., and Vecci, L.,
Fast chain coding of region boundaries Pattern
Analysis and Machine Intelligence, IEEE
Transactions on, vol. 20, no. 4, pp. 407-415,
1998.

	1. INTRODUCTION
	2. CONSTRAINTS
	2.1. Timing Constraints
	2.2. Bandwidth Constraints
	2.3. Resource Constraints

	3. GENERAL TECHNIQUES
	3.1. Look-up Tables
	3.2. Raster-based Methods

	4. ALGORITHM MAPPING
	4.1. Point operations
	4.2. Window operations
	4.3. Global operations

	5. SUMMARY
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

