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Abstract 

Spectral warping is a time domain to time domain 

transformation on a signal that effectively warps the 

frequency content of the original signal. Here we present 

a matrix formulation of the spectral warping 

transformation. The transform matrix is decomposed into 
three steps. The first is a DFT to convert the time signal 

into the frequency domain. Step two is an interpolation 

matrix to calculate the signal content at the desired new 

frequency samples. This effectively provides the frequency 

warping. The final step is an inverse DFT to transform 

the signal back into the time domain.  
A direct consequence of this matrix representation is a 

direct FIR implementation of spectral warping, rather 

than the more commonly used IIR technique. We 

demonstrate that spectral warping is a generalisation of 

linear filtering, and show how the conventional all-pass 

spectral warping transformation can be generalised by 
using either arbitrary frequency mapping functions or 

different interpolation schemes. Finally, the conditions 

for the invertibility of the spectral warping transformation 

are derived. 

1 Introduction 

The importance of analogue and mixed-signal testing 
has grown increasingly during the last decades. Many 

specialists in different countries have carried out intensive 

research and development on the topic. This has resulted 

in many different efficient techniques and approaches. 

Digital Signal Processing (DSP)-based testing has proved 

to be one of the most promising among them. It involves 
employing digital tools and methods to test both digital 

and analogue components of the Device Under Test 

(DUT).  

In the basic arrangement of DSP-based testing both 

signal generation and output measurement are realised by 

means of pure digital circuitry. Test signals that are 
usually used in this scheme include: digitised sinusoid, 

digitised multi-tone, pseudorandom, etc., while the 

following algorithms are traditionally used for response 

analysis: Discrete Fourier Transform (DFT) (normally 

computed by means of Fast Fourier Transform (FFT)), 

sine-wave fitting, cross-correlation, auto-correlation, 
filtering, etc.  

DSP-based testing is an effective way around serious 

limits of pure analogue instrumentation (cross-talk, non-

linearity, noise, drift, aging, improper calibration, long 

filter settling time, thermal effects and so on). At the same 

time, DSP-based testing provides benefits inherent to the 
use of digital components and tools (accuracy, stability, 

single set-up for multiple types of tests, repeatability of 

results, etc.). Besides that, in DSP-based testing all test 

access can be obtained through the same digital I/O ports, 

while the DUT can be tested for many parameters in one 

run thus increasing throughput. 
Often in analogue and mixed signal devices, the 

frequency domain characteristics or transfer function of a 

device under test are of interest. Usually the focus is on a 

particular region of the frequency spectrum rather than 

the complete spectrum, so improved resolution is desired 
in the region of interest. Conventional analysis using an 

FFT provides equal resolution from DC up to the Nyquist 

frequency. However, many of the samples produced by 

the FFT are not required, and more detail is often desired 

around the frequencies of interest. Improving the 

resolution requires taking a longer FFT so that the 
samples are more closely spaced in the frequency domain. 

An alternative approach that has been investigated to 

solve some of these problems is spectral warping [1-5]. 

The spectral warping transform modifies the signal from 

the device under test in such a way that the samples 

provided by an FFT of the warped signal correspond to 
unequally spaced samples of the Fourier Transform of the 

original signal. Thus, by warping the signal prior to taking 

the FFT, unequal frequency resolution is achieved. This 

allows a particular region of the spectrum to be analysed 

with higher resolution (more closely spaced samples) 

without having to increase the size of the FFT. 
The spectral warping transform is a time domain 

transformation of a signal in that both the input and 
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output are time domain signals. It has been realised 

through a cascade of first order IIR filter sections [1,3,5]. 
The continuous signal to be analysed is sampled, and split 

into a series of frames of N samples each. The spectral 

warping transform is applied to each frame by time-

reversing the samples within a frame and passing them 

into the filter network. After final sample has been 

entered, the outputs of each of the first order filter stages 
provide the samples of the warped signal. Because of the 

frequency warping, there will generally be more output 

samples than input [3,5]. 

The rest of this paper investigates a matrix formulation 

of the spectral warping transform. While such a 
formulation may not necessarily be practical from an 

implementation point of view, it can aid the 

understanding of spectral warping, and can provide 

further insight into its properties. 

2 Analysis of the Transform 

Conceptually, the spectral warping transform is 

derived by taking non-uniformly spaced frequency 
samples, and warping them to make them uniformly 

spaced [5]. The frequency axis corresponds to the unit 

circle within the z-domain, therefore any warping that 

maps the unit circle onto itself in the z-domain may be 

used for spectral warping. An all-pass mapping satisfies 

this relationship [5,6]. If the mapping is one-to-one, then 
it will also be invertible.  

The spectral warping process (illustrated in figure 1) is 

equivalent to evaluating the z-transform of the input 

signal at the non-uniform sample points around the unit 

circle, and taking the inverse discrete Fourier transform of 
the result. The spectral warping takes place when the non-

uniform samples of the z-transform are treated as 

uniformly spaced by taking the inverse Fourier transform. 

This process may be represented mathematically as 

follows. 

2.1 Matrix representation 

Let ][nf  be the N samples within one frame of the 

input signal, then its z-transform is given by: 
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for a first order all-pass mapping with warp parameter a 

[5]. The summation of equation (1) may be conveniently 

represented in matrix form: 
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or fHG
NM ,

= , where f are the N samples arranged as a 

vector, 
NM ,

H  is the MxN z-transform matrix representing 

equation (1), and G are the samples in the z-domain at the 

points indicated by equation (2). Each row of H therefore 

gives one frequency sample in the z-domain. 

These samples are then warped to make them evenly 

spaced around the unit circle. The frequency warping is 
effectively the inverse of equation (2) and is illustrated in 

figure 1(b). This spectral warping will stretch one portion 

of the spectrum (low frequencies in figure 1), while 

compressing another portion (high frequencies in figure 

1). 
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Figure 1. A graphical representation of the steps involved in spectral warping. The unevenly 
distributed z-domain samples (a) are redistributed by the spectral warping function (b) to be evenly 

spaced around the unit circle (c). The inverse z-transform now reduces to an inverse DFT. 

Proceedings of the Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA 2004) 
0-7695-2081-2/04 $20.00 © 2004 IEEE 



Since the samples are evenly spaced around the unit 

circle, the inverse z-transform corresponds to an inverse 

discrete Fourier transform: 
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or GDg 1−
=

M
, where 

M
D  is an M-point DFT matrix. 

Substituting equation (3) into (5) gives: 
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From equation (6) it is clearly seen that the spectral 

warping transformation, S, is linear in that each of the M 

output samples is a linear combination of the N input 
samples. Each column of S therefore represents the output 

produced by an impulse at the corresponding input 

sample. As the columns of the warping transformation are 

quite different and not related by simple delays, the 

warping is not time invariant. Therefore a time shift of the 
input signal will not correspond to a simple shift in the 

warped output. Figure 2 shows some of the impulse 

responses associated with the transformation shown in 

figure 1. 

2.2 Frequency interpolation 

Matrix H can be further decomposed. First consider 

the N-point DFT of the input sequence. This gives N 

equally spaced samples around the unit circle in the z-

domain. The M points produced by H are effectively 
interpolated between these. That is 
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is effectively an MxN interpolation matrix. C therefore 

directly represents the frequency domain warping of 

equation (2). Each row of C gives one of the warped 
frequency samples as a linear combination of the 

uniformly spaced samples of the standard DFT. The 

interpolation functions are expected to be modified sinc 

functions – modified because sampled data is periodic in 

the frequency domain: 
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When these are offset to the desired sample positions and 

sampled, the interpolation matrix elements are derived 

from evaluating equation (8): 
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Figure 3 shows the magnitude and phase of two rows 

of the C matrix for the above example. The phase term in 

equation (10) has an interesting effect on the phase of the 
interpolation samples. The (N-1) factor almost completely 

compensates for the phase reversal between adjacent 
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Figure 2. The seventh and fourteenth columns of 

a 64×16 spectral warping matrix, S, representing 
the impulse responses of the corresponding 

input samples, for a warp parameter of 0.5. 
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Figure 3. Two example rows of a 64×16 interpola-
tion matrix, C, showing the modified sinc func-
tion. The markers show the points at which the 
function is evaluated. 
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nodes of the sinc interpolation, resulting in adjacent 

coefficients having similar phase.  
Although the coefficients of DM, DN and C are 

complex in general, the result of their product in S is real. 

This because of the conjugate symmetry involved with 

each of the steps. Since the sampled data is real, the initial 

DFT of that sampled data will be conjugate symmetric. If 

the warping function is symmetric for positive and 
negative frequencies, then after the interpolation by C the 

warped frequency components will also be conjugate 

symmetric. Finally the inverse DFT will transform the 

conjugate symmetric coefficients back into a real 

sequence. 

2.3 FIR implementation 

Multiplying the input samples by the matrix S 

effectively represents a bank of real coefficient FIR filters 

with each row of S making up a separate filter in the 
bank. When the complete frame has been input to the 

filter (N samples), the output of each filter provides a 

separate sample of the warped waveform. The FIR filter 

bank therefore provides an alternative to the IIR 

implementation. Such an FIR implementation wouldn’t 
have the transient components of the IIR implementation 

from not initialising the memory. Also the FIR filters 

would be less susceptible to word length effects because 

they can be implemented in direct form. The IIR filters 

being recursive will accumulate the error with each filter 

stage that the signal passes through. The biggest 
disadvantage of the FIR filters is that all of the 

coefficients are different, whereas almost all of the filters 

of the IIR implementation are identical. To change the 

warp factor, all MxN coefficients must be recalculated, 

whereas with the IIR filter, only a single parameter is 
affected. 

2.4 Other interpolation functions 

The spectral warping provided by equation (2) can be 

generalised by modifying the interpolation matrix, C. One 
generalisation would be to use something other than an 

all-pass transformation as the warp function, for example 

a piecewise linear function. The samples in the frequency 

domain may be placed arbitrarily around the unit circle, to 

give an arbitrary warp function. Then, the appropriate 
interpolation coefficients may be found from equation (8) 

or (10). 

A second generalisation would be to use a different 

interpolation to that provided by equation (10). For 

example, a linear interpolation could be used between the 

nearest two frequency samples (the phase term of 
equation (10) must also be used for best results). This 

would result in approximate frequency estimates, and 

may be adequate in many circumstances. Figure 4 

compares the impulse responses generated by using linear 

interpolation with those for sinc interpolation. For input 

samples near the centre of the frame, the coefficients are 
almost identical, whereas those near the start and end of 

the frame diverge more from ideal. The overall results of 

this effect may be seen in figure 5. The differences 

between the two different interpolation functions may be 

significantly reduced by windowing the input with a 

Hanning window prior to warping because this reduces 
the weight of the samples at the start and end of the 

frame. 
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Figure 5. Sinc (a) and linear (b) spectral warping 

applied to the signal (sin π/7 + sin 6π/7)/2. 
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teenth (b) columns of the 64×16 S matrix are 
shown. 
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One special case interpolation function is worth noting. 

If C is square and diagonal, equation (7) corresponds to a 

standard linear filter. The input samples are transformed 
into the frequency domain, where they are weighted by C 

and transformed back into the time domain. The values 

along the diagonal of C would in that case represent the 

frequency response of the filter. Therefore, spectral 

warping can be seen as a generalisation of linear filtering. 

2.5 Invertibility 

For the spectral warping to be invertible, it is necessary 

for C, or equivalently H, to be invertible. However, in 

general C (and H) are not square, so a pseudo-inverse 
must exist such that 

N
ICC =

−1  (11) 

where IN is the NxN identity matrix. Equation (11) implies 

that C must be of rank N for such an inverse to exist. It 

can be shown that H is invertible provided there are at 
least N distinct warped frequencies [7]. The implication 

therefore is that any additional frequency samples are 

actually redundant. While from a mathematical viewpoint 

this may be true, the output signal g in that case has little 

physical meaning. It has been shown [3-5] that to 

completely represent the warped output signal in the time 
domain, generally more output samples than input 

samples are required. This should not be a surprise, 

because a similar effect occurs when implementing 

convolution via the frequency domain [6]. The input 

signal must be zero-padded prior to filtering to prevent 

aliasing in the time domain. 
With spectral warping, the warp function stretches or 

spreads some frequencies in the frequency domain and 

compresses others. Any such frequency scaling will result 

in a corresponding inverse time scaling, so where the 

frequencies are compressed, the corresponding frequency 

components will become stretched in the output time 
waveform. This time–frequency relationship can be 

clearly seen in figure 6, where a spectrogram is taken of a 

warped unit impulse. 

The effect of producing fewer time domain samples is 

that the signal at those frequencies will become aliased in 

the time domain (see figure 7). While technically such 
aliasing can be recovered (since H is invertible) the time 

domain signal has little meaning in this context. 
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Figure 7. The result of spectrally warping a unit 
impulse using too few output samples. The plot 
and spectrogram above show the warped output 
of a unit impulse occurring at the M/2

 th
sample, 

with the sequence length and warp parameter 
identical to those of figure 6. The wrap-around 
effect of temporal aliasing is clearly visible. 
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Figure 6. Time domain plot and spectrogram of 
the result of spectrally warping a unit impulse 
occurring at the M/4

 th
 sample (where M is the 

output sequence length). A warp parameter of 
a = 0.5 compresses the low frequencies in time 
and stretches the high frequencies. All the 
frequencies are warped towards the Nyquist 

frequency (as illustrated in figure 1). 
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When C is not square, the inverse is not unique 

because only N of the M frequency sample points are 

linearly independent. When an all-pass mapping is used 
for the spectral warping transform, the inverse transform 

is also given by equation (2) except using a warp 

parameter of -a. Since the transformation with a increases 

the number of samples from N to M, the inverse 

transformation will also have the same time stretching 

ratio. However, the time stretching of the inverse 
transform occurs at frequencies that were shrunk in time 

by the forward transform. Since there are N input 

samples, provided that M is sufficiently long to represent 

the entire transformed sequence without aliasing, then the 

inverse transform will provide only N non-zero output 

samples. 

3 Summary 

This paper has formulated a matrix representation of 

the spectral warping transform. This effectively 

decomposes the transformation into 3 components: a DFT 

from the original time domain samples into the frequency 

domain; a warping matrix that interpolates the available 
frequency samples to give a new set of frequency 

samples; and an inverse DFT to transform these back into 

the time domain. The transformation matrix effectively 

represents a bank of FIR filters that can be used to 

implement the warping. From the matrix representation, it 

is shown that the spectral warping transform is not time 
invariant, although the impulse responses are readily 

available from the transformation matrix. 

Spectral warping can be seen as a generalisation of 

linear filtering, and warping by an all-pass function can 

also be generalised by using interpolation functions other 

than sincs, or by applying an arbitrary frequency 

mapping. For the transformation to be invertible, the 

original frequency samples must be able to be derived 

from the new warped samples. 
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