
Priority based Dynamic Multiple Robot Path Planning
Taixiong Zheng

Department of Automation
Chongqing University of Post and Telecommunication, China

zhengtaixiong@163.net

D. K. Liu
ARC Centre of Excellence for Autonomous Systems (CAS), Faculty of Engineering

University of Technology, Sydney, Australia
dkliu@eng.uts.edu.au

Ping Wang
Department of Automation

Chongqing University of Post and Telecommunication, China
wangping@cqupt.edu.cn

Abstract
Path planning has been a topic of research in multiple robot coordination and control. The purpose of this paper
is to investigate the path planning problem of a group of robots with communication between each other to
perform a set of prioritized tasks in a dynamic environment. Unlike traditional path planning approaches that a
path does not change once the path has been planned, the approach investigated in this paper plans each robot’s
path dynamically, i.e., the path will change according to the environment. When one robot starts to perform or
finishes a task, it broadcasts the task’s start position or goal position to other robots. Then other robots will
change their paths if the broadcast position has influence on their planned paths.

Keywords: multiple robots, path planning, collaborative control

1 Introduction
Path planning is one of the fundamental problems in
multiple mobile robotic systems. Various algorithms
have been proposed and investigated to solve this
problem. These algorithms can be roughly categorized
as centralized and decentralized according to the
information handling structure among robots.
Centralized path planning algorithms normally assign
priorities to robots in advance. They can guarantee
optimal path if the environment is static and the
number of robots is small. In a dynamic environment
with large number of robots, decentralized path
planning algorithms are more preferable.
Decentralized path planning algorithms often apply
traffic rules and thus are suitable for route network.
They find the optimal paths and solve conflict
problems by assigning priorities dynamically and
negotiating among robots. They allow each robot to
search its own path in advance without considering
other robots. If there exits a potential collision, they
can negotiate to solve the conflict problem. Solution
of the negotiation could be that one robot stops and
waits until the potential collision disappears.

In the case of a large number of tasks with different
priority levels in a dynamic environment, each robot

has to perform many tasks with different priority
levels in the order of priority. The current algorithms,
either centralized or decentralized, cannot guarantee
that the planned path for each robot is always optimal
because all the tasks are considered as static obstacles
at the planning stage. For example, container handling
in a container terminal, if one robot removes the
container from a place before the other robots reaches
that place, the container should not be considered as a
static obstacle to other robots. Other robots need not
move around the place to avoid collision. On the other
hand, if a container is placed at another robot’s path
before it passes the position, the task will be an
obstacle. This research will focus on these two cases
and solve the problem by proposing an effective
approach.

2 Literature Review
Different approaches for multiple mobile robot path
planning have been proposed and studied by
researchers. The approaches to avoid planning path in
a high-dimensional composite configuration space are
priority assignment and decoupling techniques.

Hu et al [1] proposed a tracking controller for mobile
robots by incorporating neural dynamics equations
into a conventional non-time based controller, which

2nd International Conference on Autonomous Robots and Agents
December 13-15, 2004 Palmerston North, New Zealand

373

resolves the collision problem for multi-robot systems
by setting a set of control rules for every case. For
different environment or situation, the control rules
have to be set differently.

Bennewitz[2] proposed a path planning approach to
multi-robot systems by optimizing priority schemes
for prioritized and decoupled techniques. Every robot
generates its path without considering the paths of
others. Possible conflict in the trajectories of robots is
then checked. The conflict between robots is resolved
by introducing a priority scheme that determines the
order of priority. The path of a robot is planned in its
configuration time space based on the map of the
environment and the paths of the other robots with
higher priorities.

Aronov et al [3] studied the motion-planning problem
for pairs and triples of robots operating in a shared
workspace containing n obstacles. They showed that
it is sufficient to consider a constant number of robot
systems whose number of degree of freedom is at
most d-1 for pairs of robots and d-2 for triples. They
presented a ()dnO time algorithm to solve the motion-
planning problem for a pair of robots, which is one
order of magnitude faster than what the standard
method would give. For a triple of robots the running
time becomes ()1−dnO , which is two orders of
magnitude faster than the standard method.

Guilherme [4] addressed the problem of planning the
motion of a team of mobile robots subject to
constraints imposed by sensors and the
communication network. The goal was to develop a
decentralized motion control system that leads each
robot to their individual goals while keeping
connectivity with its neighbours. Experimental results
with a group of car-like robots equipped with omni
directional vision systems were presented.

LaValle et al[5] introduced a form of optimality that
is consistent with concepts from multi-objective
optimization and game theory research by considering
independent performance criteria. They implemented
multi-robot motion planning algorithms derived from
the principle of optimality for three cases: i)
coordination along fixed and independent paths; ii)
coordination along independent roadmaps; and iii)
unconstrained motion planning.

It can be seen that the method in [1] is to set different
control rules for different environments or situations
to solve collision problem but not deal with the path
planning problem. The algorithm in [2] needs to
compute the possible collision zones in advance, and
it is obvious that the compute cost will increase
rapidly with the increase of the number of robots. The
algorithm in [3] will give a good performance only if
it is applied in the situation with a small quantity of
robots, such as the situation with two or three robots.
The algorithm in [5] optimizes each robot’s path by
considering independent performance criteria. All the

methods or algorithms mentioned in the literatures
cannot guarantee an optimal path for each robot
considering the dynamic change of the environment.

3 An approach for path planning

3.1 Problem description
Given n prioritized tasks are assigned to m robots
and communications are existed among the robots.
Each robot knows the environment in advance. For
robot iR , its tasks { }kiiii rrrrr L,,, 321= , where
j
ir denotes the jth task of robot iR , are arranged in

the order of priority. The robot iR executes the tasks
from the one with highest priority to the one with
lowest priority. For the task j

ir of robot iR , its start

position and goal position are j
is and j

ig

respectively. To execute the task j
ir , iR need to

move from the destination 1−j
ig of the predecessor

task 1−j
ir to j

is , then from j
is to j

ig . For the first

task 1
ir , iR is assumed to move from its initial

position 0
is to 1

is , then from 1
is to 1

ig .

For undertaking each task, the robot needs to plan a
path from its current position to the start position of
the next task, and to the destination based on the
environment. For example, to execute task j

ir , robot

iR will plans its path jP in advance according to the
static obstacles in the environment when it finishes
the task 1−j

ir . When Robot iR executes the task j
ir

along the planned path jP , three cases might happen:

(1) The goal positions of other robots’ tasks are on the
path jP and other robots put their objects on the
way of jP before robot iR passes it. If robot

iR moves along its original path jP , a collision
will occur.

(2) The start positions of other robots are originally on
the way of path jP and are considered as static
obstacle(s) when the robot plans its path. But
these obstacles will be moved before the robot

iR moves around it. In these cases, robot iR
does not need to move around the obstacle. A
straight path at that position should be generated.

(3) Robots’ paths are crossed, collision among the
robots may happen when they undertake their
tasks.

2nd International Conference on Autonomous Robots and Agents
December 13-15, 2004 Palmerston North, New Zealand

374

3.2 Path planning
An environment is represented by occupancy grids,
which separate the environment into a grid of equally
spaced cells. Then the path planning for each robot
becomes a graph search problem, shown in Figure 1.

robot

robot

task

task

Figure 1: The occupancy grid expression of an

environment

Given that robot iR just finishes its task 1−j
ir , it

plans its path jP from 1−j
ig to j

is then to j
ig base

on the current environment. The path jP satisfies the
condition that the robot iR does not collide with any

object if all the objects keep static when iR execute

the task j
ir . The path jP will then be adjusted in the

following cases:

z Case 1: iR meets other robots at the intersection
area of their paths. The robot performing the task
with higher priority is endowed with higher
priority. If the robots have the same priorities,
the robot closer to its goal position of the current
task will be assigned higher priority. That is to
say, the robot with lower priority will stop and
wait till the robot with higher priority passes the
intersection.

z Case 2: The task’s goal position of robot jR is

on the path of robot iR and jR has located the

task at its goal position before iR passes the

position. In this case, iR need to re-plan the
path around the obstacle.

z Case 3: One task is removed by robot jR from
its position which is on the way of other robot

iR , this task will no longer be as obstacle to

robot iR . Then the path jP of robot iR is not

the optimized path any more. The robot iR will
plan a new path from its current position to its

goal position.

4 Simulation Results
In order to verify the method presented above, two
simple examples, each of which consists of two robots
and four tasks, are used. Each robot is assigned two
tasks respectively, and each task is to move a box
from a start position to a destination. The tasks’ start
positions and goal positions, and the robots’ start
positions in example one is shown in Figure 2. A*
algorithm was applied as the path planning algorithm.

Figure 3 shows different states of operation when the
two robots are moving the boxes in the example one.
In Figure 3(a) and 3(b), Robot 2 (white) waits at the
intersection until Robot 1 (green) passes the
intersection because Robot 1’s task priority is higher
than that of Robot 2. In Figure 3(c) and 3(d), As
Robot 1 has moved the second box from its start
position and the box is no longer the obstacle of
Robot 2, Robot 2 re-planed its path to pass this start
position. Figure 3(c) shows the moment just before
Robot 1 reaches the start position of its second task.
In Figure 3(c) the blue curve shows the current path
of Robot 2 and the yellow line shows the changed
path after Robot 1 take its second task away from the
start position. Figure 3 (d) shows that Robot 2 goes
directly through the original position of Robot 2’s
second task’s start position. That is to say, Robot 1’s
second task is no longer an obstacle for Robot 1.
Figure 3(e), 3(f) and 3(g) shows the Case 2 stated in
Section 3.2, i.e., Robot 1 moved a box to its goal
position, but the goal position of Robot 2’s second
task is on the way. Robot 1 re-planed its path to avoid
collision with the box by taking a way around the box.
Figure 3(e) shows the moment Robot 1 locates the
box at the goal position and the box becomes an
obstacle of Robot 2. Robot 2 re-plans its path at this
moment. The blue line and yellow curve in Figure 3(e)
shows the original path and the changed path of Robot
2 respectively. Figure 3(f) and 3(g) shows Robot 2
move around the obstacle. Figure 3(h) shows the final
state of the two robots when they finish their tasks.

Figure 4 shows the tasks’ start positions and goal
positions and the robots’ start position in example 2.
Similar to Figure 3 in example 1, Figure 5 shows
different states of operation when the two robots are
moving the boxes in this example. Figure 5(a) and
5(b) shows the Case 1 in this example that Robot 1
and Robot 2 have the same priority. But Robot 2 must
waits at the intersection until Robot 1 passes the
intersection because the distance from Robot 1’s
current position to its goal position is shorter than that
of Robot 2, therefore higher priority is assigned to
Robot 1. Figure 5(c) shows the moment that before
Robot 2 reaches its first task goal position Robot 1
has reached its second task start position. The blue
line in Figure 5(c) indicates the original path of Robot
1 at this moment. That is to say, Robot 1 should not
go around any static obstacle. Figure 5(d) shows the

2nd International Conference on Autonomous Robots and Agents
December 13-15, 2004 Palmerston North, New Zealand

375

moment that Robot 2 reaches its first task’s goal
position and Robot 1 is on the way to its goal
position. Figure 5(e) shows the moment that Robot 2
moves its first task to its goal position and Robot 1 re-
plans its path according to state of the static obstacle.
The yellow curve in Figure 5(e) indicates the changed
path of Robot 1. That is to say, Robot 1 will move
along the yellow curve to its goal position. Figure 5(f)
shows that Robot 1 goes around the obstacle. Figure
5(g) shows the final state of the two robots when they
finish their tasks.

5 Conclusion
The simulation results have shown that the proposed
method in this paper can dynamically planning the
paths of a team of robots under the conditions of the
three cases. Particularly, when several robots perform
distributed prioritized tasks, the method can guarantee
collision-free paths for each robot. This method will
be further investigated and implemented for
simultaneous task allocation and path planning
problems and applied to a number of robots in a
highly dynamic environment with many tasks.
Experiments will be conducted.

6 References
[1] Hu, E., Yang, S.Y., Chou, D., and Smith, W.R.,

“Real time tracking control obstacle with
obstacle of multiple mobile robots”. Proceedings
of IEEE International Symposium on Intelligent
Control, pages 87-92, Vancouver, Canada, 2002

[2] Bennewitz, M., Burgard, W., and Thrum, S.,
“Optimizing schedules for propertied path
planning of multi-robot systems”, Proceedings of
IEEE International Conference on Robotics and
Automation, volumn 1, P.271-276, Seoul, South
Korea, May 2001.

[3] Aronov, B., M. de Berg, F. van der Stappen,
Svestka, P., and Vleugels, J., "Motion planning
for multiple robots," Discrete and Computational
Geometry, 22:505-525 (1999).

[4] Pereira, Guilherme A. S., Das, Aveek K., Vijay
Kumar; Campos, Mario F. M., “Decentralized
motion planning for multiple robots subject to
sensing andcommunication constraints”, Second
International Workshop on Multi-Robot Systems
Mar, 2003 Washington DC,USA, P.267-278.

[5] LaValle, S.M.; Hutchinson, S.A, “Optimal motion
planning for multiple robots having independent
goals”, IEEE International Conference on
Robotics and Automation . P.2847-2852, 1996.

2nd International Conference on Autonomous Robots and Agents
December 13-15, 2004 Palmerston North, New Zealand

376

1

2

3

4 5
6

7

8910

1: Robot 1 start position

2: Robot 2 start position

3: Robot 1 first task start position

4: Robot 2 first task start position

5: Robot 1 first task goal position

6: Robot 2 first task goal position

7: Robot 1 second task start position

8: Robot 2 second task start position

9: Robot 1 second task goal position

10: Robot 2 second task goal position

Figure 2: The initial positions of the robots and their tasks in example one

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Figure 3: The state of robot1 and robot2 at different time example one

2nd International Conference on Autonomous Robots and Agents
December 13-15, 2004 Palmerston North, New Zealand

377

1

2

3

4

5

67

8

9

10

1: Robot 1 start position

2: Robot 2 start position

3: Robot 1 first task start position

4: Robot 2 first task start position

5: Robot 1 first task goal position

6: Robot 2 first task goal position

7: Robot 1 second task start position

8: Robot 2 second task start position

9: Robot 1 second task goal position

10: Robot 2 second task goal position

Figure 4: The initial positions of the robots and their tasks in example two

 (a) (b) (c) (d)

 (e) (f) (g)

Figure 5: The state of robot1 and robot2 at different time in example two

2nd International Conference on Autonomous Robots and Agents
December 13-15, 2004 Palmerston North, New Zealand

378

