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Abstract 
Path planning has been a topic of research in multiple robot coordination and control. The purpose of this paper 
is to investigate the path planning problem of a group of robots with communication between each other to 
perform a set of prioritized tasks in a dynamic environment. Unlike traditional path planning approaches that a 
path does not change once the path has been planned, the approach investigated in this paper plans each robot’s 
path dynamically, i.e., the path will change according to the environment. When one robot starts to perform or 
finishes a task, it broadcasts the task’s start position or goal position to other robots. Then other robots will 
change their paths if the broadcast position has influence on their planned paths.  

Keywords: multiple robots, path planning, collaborative control 

1 Introduction 
Path planning is one of the fundamental problems in 
multiple mobile robotic systems. Various algorithms 
have been proposed and investigated to solve this 
problem. These algorithms can be roughly categorized 
as centralized and decentralized according to the 
information handling structure among robots. 
Centralized path planning algorithms normally assign 
priorities to robots in advance. They can guarantee 
optimal path if the environment is static and the 
number of robots is small. In a dynamic environment 
with large number of robots, decentralized path 
planning algorithms are more preferable. 
Decentralized path planning algorithms often apply 
traffic rules and thus are suitable for route network. 
They find the optimal paths and solve conflict 
problems by assigning priorities dynamically and 
negotiating among robots. They allow each robot to 
search its own path in advance without considering 
other robots. If there exits a potential collision, they 
can negotiate to solve the conflict problem. Solution 
of the negotiation could be that one robot stops and 
waits until the potential collision disappears. 

In the case of a large number of tasks with different 
priority levels in a dynamic environment, each robot 

has to perform many tasks with different priority 
levels in the order of priority. The current algorithms, 
either centralized or decentralized, cannot guarantee 
that the planned path for each robot is always optimal 
because all the tasks are considered as static obstacles 
at the planning stage. For example, container handling 
in a container terminal, if one robot removes the 
container from a place before the other robots reaches 
that place, the container should not be considered as a 
static obstacle to other robots. Other robots need not 
move around the place to avoid collision. On the other 
hand, if a container is placed at another robot’s path 
before it passes the position, the task will be an 
obstacle. This research will focus on these two cases 
and solve the problem by proposing an effective 
approach. 

2 Literature Review 
Different approaches for multiple mobile robot path 
planning have been proposed and studied by 
researchers. The approaches to avoid planning path in 
a high-dimensional composite configuration space are 
priority assignment and decoupling techniques.  

Hu et al [1] proposed a tracking controller for mobile 
robots by incorporating neural dynamics equations 
into a conventional non-time based controller, which 
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resolves the collision problem for multi-robot systems 
by setting a set of control rules for every case. For 
different environment or situation, the control rules 
have to be set differently.  

Bennewitz[2] proposed a path planning approach to 
multi-robot systems by optimizing priority schemes 
for prioritized and decoupled techniques. Every robot 
generates its path without considering the paths of 
others. Possible conflict in the trajectories of robots is 
then checked. The conflict between robots is resolved 
by introducing a priority scheme that determines the 
order of priority. The path of a robot is planned in its 
configuration time space based on the map of the 
environment and the paths of the other robots with 
higher priorities. 

Aronov et al [3] studied the motion-planning problem 
for pairs and triples of robots operating in a shared 
workspace containing n obstacles. They showed that 
it is sufficient to consider a constant number of robot 
systems whose number of degree of freedom is at 
most d-1 for pairs of robots and d-2 for triples. They 
presented a ( )dnO  time algorithm to solve the motion-
planning problem for a pair of robots, which is one 
order of magnitude faster than what the standard 
method would give. For a triple of robots the running 
time becomes ( )1−dnO , which is two orders of 
magnitude faster than the standard method.  

Guilherme [4] addressed the problem of planning the 
motion of a team of mobile robots subject to 
constraints imposed by sensors and the 
communication network. The goal was to develop a 
decentralized motion control system that leads each 
robot to their individual goals while keeping 
connectivity with its neighbours. Experimental results 
with a group of car-like robots equipped with omni 
directional vision systems were presented. 

LaValle et al[5] introduced a form of optimality that 
is consistent with concepts from multi-objective 
optimization and game theory research by considering 
independent performance criteria. They implemented 
multi-robot motion planning algorithms derived from 
the principle of optimality for three cases: i) 
coordination along fixed and independent paths; ii) 
coordination along independent roadmaps; and iii) 
unconstrained motion planning. 

It can be seen that the method in [1] is to set different 
control rules for different environments or situations 
to solve collision problem but not deal with the path 
planning problem. The algorithm in [2] needs to 
compute the possible collision zones in advance, and 
it is obvious that the compute cost will increase 
rapidly with the increase of the number of robots. The 
algorithm in [3] will give a good performance only if 
it is applied in the situation with a small quantity of 
robots, such as the situation with two or three robots. 
The algorithm in [5] optimizes each robot’s path by 
considering independent performance criteria. All the 

methods or algorithms mentioned in the literatures 
cannot guarantee an optimal path for each robot 
considering the dynamic change of the environment.  

3 An approach for path planning 

3.1 Problem description 
Given n  prioritized tasks are assigned to m  robots 
and communications are existed among the robots. 
Each robot knows the environment in advance. For 
robot iR , its tasks { }kiiii rrrrr L,,, 321= , where 
j
ir  denotes the jth  task of robot iR , are arranged in 

the order of priority. The robot iR  executes the tasks 
from the one with highest priority to the one with 
lowest priority. For the task j

ir of robot iR , its start 

position and goal position are j
is  and j

ig  

respectively. To execute the task j
ir , iR  need to 

move from the destination 1−j
ig of the predecessor 

task 1−j
ir  to j

is , then from j
is  to j

ig . For the first 

task 1
ir , iR  is assumed to move from its initial 

position 0
is  to 1

is , then from 1
is  to 1

ig . 

For undertaking each task, the robot needs to plan a 
path from its current position to the start position of 
the next task, and to the destination based on the 
environment. For example, to execute task j

ir , robot 

iR  will plans its path jP  in advance according to the 
static obstacles in the environment when it finishes 
the task 1−j

ir . When Robot iR  executes the task j
ir  

along the planned path jP , three cases might happen:  

(1) The goal positions of other robots’ tasks are on the 
path jP  and other robots put their objects on the 
way of jP  before robot iR  passes it. If robot 

iR  moves along its original path jP , a collision 
will occur.  

(2) The start positions of other robots are originally on 
the way of path jP  and are considered as static 
obstacle(s) when the robot plans its path. But 
these obstacles will be moved before the robot 

iR  moves around it. In these cases, robot iR  
does not need to move around the obstacle. A 
straight path at that position should be generated.  

(3) Robots’ paths are crossed, collision among the 
robots may happen when they undertake their 
tasks. 
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3.2 Path planning 
An environment is represented by occupancy grids, 
which separate the environment into a grid of equally 
spaced cells. Then the path planning for each robot 
becomes a graph search problem, shown in Figure 1. 

robot

robot

task

task

 
Figure 1: The occupancy grid expression of an 

environment 

Given that robot iR  just finishes its task 1−j
ir , it 

plans its path jP  from 1−j
ig  to j

is  then to j
ig  base 

on the current environment. The path jP  satisfies the 
condition that the robot iR  does not collide with any 

object if all the objects keep static when iR  execute 

the task j
ir . The path jP  will then be adjusted in the 

following cases:  

z Case 1: iR  meets other robots at the intersection 
area of their paths. The robot performing the task 
with higher priority is endowed with higher 
priority. If the robots have the same priorities, 
the robot closer to its goal position of the current 
task will be assigned higher priority. That is to 
say, the robot with lower priority will stop and 
wait till the robot with higher priority passes the 
intersection.  

z Case 2: The task’s goal position of robot jR  is 

on the path of robot iR  and jR  has located the 

task at its goal position before iR  passes the 

position. In this case, iR  need to re-plan the 
path around the obstacle. 

z Case 3: One task is removed by robot jR  from 
its position which is on the way of other robot 

iR , this task will no longer be as obstacle to 

robot iR . Then the path jP of robot iR  is not 

the optimized path any more. The robot iR  will 
plan a new path from its current position to its 

goal position. 

4 Simulation Results 
In order to verify the method presented above, two 
simple examples, each of which consists of two robots 
and four tasks, are used. Each robot is assigned two 
tasks respectively, and each task is to move a box 
from a start position to a destination. The tasks’ start 
positions and goal positions, and the robots’ start 
positions in example one is shown in Figure 2. A* 
algorithm was applied as the path planning algorithm. 

Figure 3 shows different states of operation when the 
two robots are moving the boxes in the example one. 
In Figure 3(a) and 3(b), Robot 2 (white) waits at the 
intersection until Robot 1 (green) passes the 
intersection because Robot 1’s task priority is higher 
than that of Robot 2. In Figure 3(c) and 3(d), As 
Robot 1 has moved the second box from its start 
position and the box is no longer the obstacle of 
Robot 2, Robot 2 re-planed its path to pass this start 
position. Figure 3(c) shows the moment just before 
Robot 1 reaches the start position of its second task. 
In Figure 3(c) the blue curve shows the current path 
of Robot 2 and the yellow line shows the changed 
path after Robot 1 take its second task away from the 
start position. Figure 3 (d) shows that Robot 2 goes 
directly through the original position of Robot 2’s 
second task’s start position. That is to say, Robot 1’s 
second task is no longer an obstacle for Robot 1. 
Figure 3(e), 3(f) and 3(g) shows the Case 2 stated in 
Section 3.2, i.e., Robot 1 moved a box to its goal 
position, but the goal position of Robot 2’s second 
task is on the way. Robot 1 re-planed its path to avoid 
collision with the box by taking a way around the box. 
Figure 3(e) shows the moment Robot 1 locates the 
box at the goal position and the box becomes an 
obstacle of Robot 2. Robot 2 re-plans its path at this 
moment. The blue line and yellow curve in Figure 3(e) 
shows the original path and the changed path of Robot 
2 respectively. Figure 3(f) and 3(g) shows Robot 2 
move around the obstacle. Figure 3(h) shows the final 
state of the two robots when they finish their tasks. 

Figure 4 shows the tasks’ start positions and goal 
positions and the robots’ start position in example 2. 
Similar to Figure 3 in example 1, Figure 5 shows 
different states of operation when the two robots are 
moving the boxes in this example. Figure 5(a) and 
5(b) shows the Case 1 in this example that Robot 1 
and Robot 2 have the same priority. But Robot 2 must 
waits at the intersection until Robot 1 passes the 
intersection because the distance from Robot 1’s 
current position to its goal position is shorter than that 
of Robot 2, therefore higher priority is assigned to 
Robot 1. Figure 5(c) shows the moment that before 
Robot 2 reaches its first task goal position Robot 1 
has reached its second task start position. The blue 
line in Figure 5(c) indicates the original path of Robot 
1 at this moment. That is to say, Robot 1 should not 
go around any static obstacle. Figure 5(d) shows the 
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moment that Robot 2 reaches its first task’s goal 
position and Robot 1 is on the way to its goal 
position. Figure 5(e) shows the moment that Robot 2 
moves its first task to its goal position and Robot 1 re-
plans its path according to state of the static obstacle. 
The yellow curve in Figure 5(e) indicates the changed 
path of Robot 1. That is to say, Robot 1 will move 
along the yellow curve to its goal position. Figure 5(f) 
shows that Robot 1 goes around the obstacle. Figure 
5(g) shows the final state of the two robots when they 
finish their tasks. 

5 Conclusion 
The simulation results have shown that the proposed 
method in this paper can dynamically planning the 
paths of a team of robots under the conditions of the 
three cases. Particularly, when several robots perform 
distributed prioritized tasks, the method can guarantee 
collision-free paths for each robot. This method will 
be further investigated and implemented for 
simultaneous task allocation and path planning 
problems and applied to a number of robots in a 
highly dynamic environment with many tasks. 
Experiments will be conducted. 
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1: Robot 1 start position

2: Robot 2 start position

3: Robot 1 first task start position

4: Robot 2 first task start position

5: Robot 1 first task goal position

6: Robot 2 first task goal position

7: Robot 1 second task start position

8: Robot 2 second task start position

9: Robot 1 second task goal position

10: Robot 2 second task goal position

 
Figure 2: The initial positions of the robots and their tasks in example one 

 

    
                   (a)                                    (b)                                             (c)                                    (d) 
 

    
                   (e)                                       (f)                                         (g)                                     (h) 

Figure 3: The state of robot1 and robot2 at different time example one 
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1: Robot 1 start position

2: Robot 2 start position

3: Robot 1 first task start position

4: Robot 2 first task start position

5: Robot 1 first task goal position

6: Robot 2 first task goal position

7: Robot 1 second task start position

8: Robot 2 second task start position

9: Robot 1 second task goal position

10: Robot 2 second task goal position

Figure 4: The initial positions of the robots and their tasks in example two 

 

    
                       (a)                                       (b)                                         (c)                                    (d) 

 

   
                       (e)                                      (f)                                        (g) 

Figure 5: The state of robot1 and robot2 at different time in example two 
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