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Abstract
We present an approach which uses 3D visual landmarks for solving the correspondence problem in Simultaneous 
Localisation and Mapping (SLAM). The 3D landmarks are computed from camera views of the robot’s local space. 
Using multiple 2D views, identified landmarks are projected, with their correct location and orientation into 3D 
world space by scene reconstruction. As the robot moves around the local space, extracted landmarks are integrated 
into a scene representation for the local space which comprises the 3D landmarks. The landmarks for a local 
space’s scene are compared against the landmarks for previously constructed scenes to determine when the robot 
is revisiting a place it has been to before.
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1. Introduction
In this paper we describe the visual landmark approach
we are using to solve the correspondence problem in
Robot Mapping. The challenge is to recognise that
parts of the environment viewed from different vantage
points correspond to the same physical space – the cor-
respondence problem. This is regarded as one of the
hard problems in Simultaneous Localisation and Map-
ping (SLAM), where it is often called cycle or loop
closing. The robot traverses a cycle in its environment
and must recognise that it has returned to a place it has
already visited. 

The problem is encountered in both topological and ab-
solute metric maps. For absolute metric maps, current
localisation methods provide consistent enough local
maps but residual error accumulates over large distanc-
es. By the time a large cycle is encountered the map
will contain significant inconsistencies. Current ap-
proaches use some form of probability evaluation to es-
timate the most likely pose (the robot’s x-y location
and its heading direction) of the robot given its current
observations and the current state of its map [1-3]. De-
tecting the cycle allows the map to be aligned correctly
but also means that the error has to be corrected back-
wards through the map.

Most topological approaches to spatial mapping parti-
tion the environment in some way and link these parti-
tions as they are experienced to form a topological map
[4-6]. The advantage of this approach is that global
consistency is not an issue because the error cannot
grow unbounded, as in absolute metric maps. Consist-
ency is not a problem within the partitions as they are
usually around the size of a local environment. State of

the art localisation methods are good enough for local
environments.

Our approach to mapping the robot’s environment ex-
tends the cognitive mapping approach of [4]. Yeap and
Jefferies [4] developed a Computational Theory of
Cognitive Maps which is based on empirical evidence
of how humans and animals remember their spatial en-
vironment [7]. Yeap and Jefferies’ topological map of
metric local space descriptions has been implemented
on a Pioneer DX mobile robot with minor adaptions to
handle input from a laser range sensor. The local space
is the space which appears to enclose the robot and is
termed the Absolute Space Representation (ASR) to re-
flect each representation having its own independent
frame of reference. The use of the term “absolute” in
this sense is confined to an ASR (see [4] for an in depth
description of how ASRs are computed).

In this paper we will show how 3D visual landmarks
can be used to recognise ASRs that have been visited
previously (the correspondence problem). The initial
description of the ASR is constructed from laser range
data. 2D landmark representations are constructed di-
rectly from this representation and are also used as part
of our solution to the correspondence problem and the
related perceptual aliasing problem. This aspect of our
work is described in another paper [8]. While 2D land-
marks are computationally less expensive to extract
and work well in environments that are rich in features,
they sometimes do not contain sufficient context to dis-
tinguish one ASR from another. For example, one 90o

corner or doorway looks very much like any other. 2D
landmarks are primarily derived from structural ele-
ments on the ASR boundary such as walls and exits in
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an indoors environment and other objects which block
the robot’s line of “sight”. 3D visual landmarks, on the
other hand, are also likely to be interesting objects
within the ASR such as furniture in a typical office en-
vironment. Combining evidence from 2D and 3D land-
marks will give us even better estimates as to when two
ASRs belong to the same physical space. However this
is outside the scope of this paper. Here we examine
how 3D visual landmarks, on their own, can distinguish
ASRs.

The initial 2D description of the ASR provides a repre-
sentation of its extent and a frame of reference within
which the 3D visual landmarks can be described. The
visual landmarks computed are the distinctive “faces”
of objects in the scene located in 3D space. Most of the
landmarks will be above the line of sight of the laser
range scanner which provides the data from which the
ASR is computed. Furthermore, the landmarks need
not be inside the local space, merely visible from with-
in it. 

The landmarks are constructed from sequential camera
views of the local space. Using multiple views, identi-
fied landmarks are projected, with their correct location
and orientation into 3D world space by scene recon-
struction. As the robot moves around the local space,
extracted landmarks are integrated into the ASR’s
“scene” representation which comprises the 3D land-
marks, ie. the faces of the objects. The landmarks for an
ASR scene are compared against the landmark scenes
for previously constructed ASRs to determine when the
robot is revisiting a place it has been to before.

2. Using 3D visual landmarks to recog-
nise ASRs in a topological map
There are three main components to the visual land-
mark recognition. First the coordinate projections re-
quired to transform the 2D views to full 3D data are
computed. These are determined by recognising strong
matching corner features in a pair of images taken at
different view points, usually with the robot having
moved forward into the scene between the two images.
Stereographic reconstruction is used to project the cor-
ners into 3D world space. Second, distinctive land-
marks of uniform colour and texture are located in the
views and using the known projections are projected

into their correct location and orientation in 3D world
space. Last, recorded distinctive landmarks in previ-
ously visited ASRs are tested against those detected in
the current ASR for matches. 

For the moment the projection of the 2D camera views
into 3D world space has been kept separate from the
segmentation and projection of distinctive landmarks
in the camera view. This reductionist approach has
been taken, at this stage, to provide a clear systematic
route to implementation of the visual landmark recog-
nition system. Ultimately one would envision develop-
ing an approach that calculates the scene reconstruction
projection as part of the segmentation of distinctive
landmarks, thus providing for better efficiency. We
will now discuss each of the three main components of
the system in detail. 

2.1 Projection from 2D camera views to 3D 
coordinate space

To calculate the scene reconstruction projections re-
quired for projecting 2D camera views into 3D world
space, matching points in two camera views are identi-
fied. The corners of intensity disparities which lie on
landmark boundaries in camera views provide the nec-
essary matching points. The robot's odometry provides
the relative position of the two camera views. Fig. 1
shows the corresponding corners in two views.
Pollefeys’ [9] method with one modification is used for
corner detection and projection.

The Harris corner detector [10] is employed to identify
and extract corners. It proceeds by applying the Prewitt
edge detector in the horizontal and vertical directions,
and constructs the smoothed squared image deriva-
tives:

where dx and dy are the results of the Prewitt operator,
in the horizontal and vertical directions respectively,
and G is a smoothing operator that consists of a convo-

Fig. 1  Finding a corresponding corner in consecutive views (a) the corner in one 
image (b) candidate corners in the other image (c) The corresponding corner in the 
other image

(a) (b) (c)

lx G dx2( )=

ly G dy2( )=

lxy G dx dy⋅( )=
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lution by a 5x5 pixel kernel of a circularly symmetric
Gaussian of σ = 1. The corner intensity measure [18]

is calculated. The local maxima in c are identified;
these correspond to significant corners in the camera
view.

The corner detector is applied to two consecutive views
between which the robot has moved a small distance.
To identify matching corners a small neighbourhood is
extracted about each detected corner from the camera
view. We take u to be the pixel values of the neighbour-
hood of the first corner and v to be the pixel values of
the neighbourhood of the second corner. The number
of pixels in the neighbourhood is N. The means  and

 are calculated for each corner, as is the cross-corre-
lation χ between the two corners. Corners in the first
view are compared to those of the second view by cal-
culating the similarity value.

This similarity value is a modification and improve-
ment to that specified by [9]. High values of s indicate
potentially matching corners. Fig. 1(a) shows a corner
to be matched. Fig. 1(b) shows a slightly different view
of the same room as in Fig. 1(a) and the corners detect-
ed as possible matches. The correct matching corner is
detected along with several false positives. By using
the translation of the robot determined from odometry,
a prediction of the likely position in the second view of
a corner detected in the first view is made and this is
used to reject false matches with a high value of s. In
this manner unique corner matches between the two
images are identified. Consider the known movement
of the robot in going from the pose associated with Fig.
1(a) to the pose associated with Fig. 1(b). This move-
ment suggests that the corner in Fig. 1(a) must move to-
wards the centre of the image in the second view (Fig.
1(b)). Only one corner in Fig. 1(b) satisfies this require-
ment. Thus the correct corner has been found. 

A perspective projection camera model is assumed
[11]. With a corner matched between two views, and
knowledge of the relative position of the camera of the
two views, one can uniquely determine the location of
the corner in 3D world space. Each matching corner is
projected into 3D world space giving a set of corre-
sponding points in the two camera views that are fully
located in 3D world space. This constitutes the deter-
mination of the 3D scene reconstruction projection.

2.2 Landmark construction

The second part of the problem is to identify distinctive
landmarks in camera views that can be used for recog-
nising previously visited ASRs. We treat distinctive
landmarks as being contiguous regions of relatively

constant colour and texture in camera views. A
straight-forward method of segmentation, satisfactory
for the structured indoor environments the robot is cur-
rently being tested in, has been devised to identify the
landmarks. We use a size threshold to ensure that small
objects, which are more likely to move frequently, are
not chosen as landmarks.

First, the magnitude of the gradient is calculated via the
Sobel operator over each of the three colour compo-
nents (red, green and blue) of a camera view. An edge
image, constructed by taking the pixelwise maximum
of the three Sobel gradient images, is then thresholded
to indicate the boundaries of similar-colour regions.
The boundary image is inverted (so that edge is back-
ground and connected regions are foreground) and
each region is identified and uniquely labelled [12]. 

Two methods are used to project the identified regions
into 3D world space. If the region is in a position of the
camera view that intersects the laser ranger data (a sin-
gle horizontal range scan at a fixed height in the world)
then the range data is used to locate the region in 3D
world space. Should the region not intersect the availa-
ble range data then the corners of the region are com-
pared to the corners detected as part of the Harris
corner detector and information from the previously
detected corners are used to project distinctive regions
into 3D world coordinates. Fig. 2 shows the landmarks
computed for the room depicted. 

2.3 Matching landmark configurations

Having detected and localised distinctive landmarks in
world coordinates it remains to compare the landmarks
of the current ASR with those of previous ASRs for a
match. The colour and the shape of the landmark are
used for matching. The colour of landmarks are com-
pared by calculating the Euclidean distance in RGB
colour space between the two landmarks. The shape of
the landmarks are compared by the histogram correla-
tion method described below.

A landmark from a camera view is projected into 3D
space then reprojected on to a 2D plane parallel to the
plane of the landmark, thus giving the front on view
down the normal to the landmark. The boundary of the
reprojected landmark is decomposed into straight line
segments and the length and angle of each segment is
calculated and inserted into a histogram in which the
lines are sorted by orientation along the x-axis of the
histogram and the lengths of the lines of the same
binned orientation are summed to give the frequency
axis of the histogram. For shape comparison the corre-
lation of the histograms of reprojected landmarks gives
the alignment of pairs of landmarks (essentially a rota-
tion of one of the landmarks until they match). The root
mean square (RMS) error is then computed. The RMS
is normalised by the energy of the two histograms to
give a value between 0 and 1. This constitutes the shape
disparity value. The disparity values for the colour of

c
lxly lxy

2
–

lx ly+
--------------------=

u
v

s χ 1 u v––( )=
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landmark pairs are computed from the Euclidean dis-
tance between the means of the pairs in RGB colour
space. Fig. 3 shows the 3D landmark scene representa-
tion for two different visits to the room depicted in Fig.
2. The comparison of the landmark pairings is shown in
Tables 1and 2. The most distinguishing feature is that
the match of landmark 4 of Fig. 3 (a) and landmark 2 of
Fig. 3 (b) has the smallest shape disparity value by far
and the smallest colour disparity. Looking at Fig. 3 (a)
and (b), it is obvious that these two landmarks have the
most distinctive shape and are really the only two ob-
jects that should match. The fact that there are a
number of low colour disparity values in the table is not
of great concern; it is the combined evidence of both
the colour and shape disparities that give confidence of
this match. It is also to be noted that only one good
matching pair of landmarks is needed. This provides
the transformation from one view’s coordinate system
to the other, hence a combined matching of all land-
marks could now be performed in 3D space. This is an
area we are currently investigating.

3. Related Work
Most approaches which use vision to recognise loca-
tions in the robot’s environment have used artificial
landmarks [13] or easily detected features such as can
be found in ceilings [14]. Recently some approaches
have appeared which compute naturally occurring
landmarks or features in the robot’s surroundings.
While not specifically engineered for robot localisation
Lowe’s [15] approach to matching different views of
an object or a scene could well be applied in the robot
mapping domain. Lowe matches Scale Invariant Fea-
ture Transform (SIFT) features, an approach which
transforms image data into scale-invariant coordinates
relative to local features. A database of these features is
compiled from a set of reference images. Matching of
new views is achieved by comparing each feature in the
new image against the database of features and finding
the best candidate match. Lamon et al. [16] also store a
database of features, but in this case they are stored as
groupings called fingerprints which characterise a lo-
cation in the robot’s environment. The features are or-
dered in the fingerprint as they appear in the robot’s

(a) (b)

(c) (d)
Fig. 2 The landmarks in an ASR scene (a) a view of the room (b) some landmarks 
overlaid the view (c) the landmarks for the view (d) the landmarks projected into 
the 3D scene of the ASR.

Fig. 3 . The landmark scene representation for two different encounters with 
the same environment. In (a) and (b) the landmarks are numbered as they are 
encountered in each separate encounter.

(a) (b)
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immediate surroundings. A new fingerprint is comput-
ed for each new view and matched against existing fin-
gerprints in the database. Kosecka and Li [17]
represent individual locations in the environment by a

set of characteristic views and the SIFT features which
are extracted from these views. Hidden Markov Local-
ization is applied to the characteristic views and the
SIFT features to determine the robot’s location.. 

4. Discussion
We have described a procedure to identify and match
distinctive landmarks in differing views of the same lo-
cal space. It has a number of important features, includ-
ing invariance to camera view and pose. The invariance
to pose was achieved by projecting landmarks in cam-
era views into 3D world coordinates and then reproject-
ing back into an invariant 2D representations.This
enabled efficient 2D histogram correlation shape rec-
ognition to be used. 

Further testing is required to establish whether this
ability to match distinctive landmarks remains when
there are many differing ASRs. Can one ASR be iden-
tified from a recalled database of landmarks for a
number of ASRs?

There are number of improvements to the algorithm
that we are considering. The segmentation algorithm
could be made more robust to changes in lighting and

shading effects by using a colour space that separates
colour information from intensity. The colour disparity
may be better calculated in a perceptually uniform col-
our space, such as CIELab, rather than RGB colour
space. The establishment of the world 3D coordinate
system is currently done separately from the landmark
segmentation process. A simpler and more efficient ap-
proach would be to integrate the two processes.

We have not yet implemented a mechanism for reason-
ing with configurations of landmarks. One good match
provides the coordinate transformation that will allow
the process to begin. In reality, due to variations in the
robot’s path and occlusions some landmarks could be
missing from the configuration. In static environments
it is possible to recover the complete set of landmarks
by ensuring all of the local space is visited. Howeve, in
dynamic environments particular landmarks may be
occluded at different times and may disappear altogeth-
er. Reasoning with landmark configurations will allow

Table 1: Comparison of colour disparities
(a refers to objects in Fig. 3 (a) and b to objects in Fig. 3 (b)

landmark 1.a 2.a 3.a 4.a 5.a 6.a 7.a 8.a

1.b 0.019 0.045 0.307 0.188 0.020 0.356 0.202 0.130

2.b 0.161 0.222 0.133 0.012 0.197 0.183 0.052 0.052

3.b 0.252 0.314 0.048 0.096 0.289 0.088 0.068 0.141

4.b 0.313 0.375 0.025 0.146 0.350 0.027 0.131 0.200

5.b 0.350 0.412 0.063 0.184 0.387 0.019 0.168 0.237

6.b 0.076 0.014 0.365 0.247 0.039 0.414 0.260 0.189

7.b 0.073 0.018 0.362 0.244 0.038 0.410 0.256 0.186

8.b 0.249 0.311 0.041 0.085 0.286 0.089 0.068 0.137

Table 2: Comparison of shape disparity
(a refers to objects in Fig. 3 (a) and b to objects in Fig. 3 (b)

landmark 1.a 2.a 3.a 4.a 5.a 6.a 7.a 8.a

1.b 0.241 0.286 0.226 0.112 0.052 0.133 0.155 0.254

2.b 0.127 0.137 0.097 0.017 0.089 0.050 0.067 0.120

3.b 0.100 0.100 0.065 0.054 0.138 0.056 0.061 0.087

4.b 0.135 0.135 0.089 0.048 0.123 0.054 0.065 0.125

5.b 0.065 0.076 0.054 0.115 0.210 0.097 0.078 0.073

6.b 0.140 0.148 0.112 0.059 0.083 0.068 0.074 0.134

7.b 0.056 0.072 0.064 0.093 0.170 0.081 0.070 0.055

8.b 0.119 0.101 0.063 0.100 0.194 0.085 0.076 0.099
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a match with some degree of confidence even when
some landmarks are missing. Given the difficulties in
computing reliable shape information across different
viewpoints of an object, colour and relative location of
landmarks should provide sufficient information for
matching configurations. The issue then is the underly-
ing uncertainty which results from occluded and par-
tially occluded landmarks.

5. Conclusion
We have shown how 3D landmarks, the faces of objects
in a scene, are computed from camera views of the lo-
cal space. Using multiple 2D views, identified land-
marks are projected, with their correct location and
orientation into 3D world space by scene reconstruc-
tion. The landmarks for an ASR scene are compared
against the landmark scenes for previously constructed
ASRs to determine when the robot is revisiting a place
it has been to before. The procedure is capable of mak-
ing strong matches between distinctive landmarks. A
successful match is dependent on at least one pair of
corresponding landmarks that have been reliably ex-
tracted. Removing some of the variance in illumination
and a less rigorous shape matching approach should
provide more matches than we have obtained here. 
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