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Abstract
The goal of this research is to develop an intuitive, adaptive, and flexible architecture for intelligent mobile robots.
We propose a hybrid architecture that uses behaviour trees and finite state machines. A task manager selects
behaviours based on approximations of their applicability and the expected reward of a behaviour. One major
feature of this architecture is that important information of the perception, reasoning, and execution parts of the
system are made explicit. This information includes parameters (e.g., colour definitions), structural information
(e.g., the behaviour tree), and the ability to represent prototypical scenarios. We use robotic soccer as a sample
domain to ground our work on agent architectures.
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1 Introduction

This paper describes our research into the design of an
intelligent agent architecture for mobile robot teams. In
contrast to previous approaches, the architecture makes
important information explicit, which makes it easier to
modify, adapt, extend this architecture.

An architecture is a unifying, coherent form or method
of construction, which provides the foundation for cre-
ating powerful intelligent systems. Developing an ar-
chitecture for intelligent mobile robot is a difficult task.
Just like other intelligent systems, mobile robots must
select correct actions out of a huge set of possibilities;
to make matters worse mobile robots need to act under
constraints imposed by the real world. One obvious ex-
ample is that the robot has to react fast enough to avoid
certain obstacles. Furthermore, sensors and actuators
are noisy and inaccurate.

The following aspects are common to all intelligent
mobile robots: perception, reasoning, and execution
(see Fig. 1). Sensors such as light, sonar, or touch,
gather information about the environment such as the
robot’s approximate location, location of nearby obsta-
cles or other robots, and information about itself such
as battery power levels. The raw sensor data must often
be filtered, correlated and/or interpreted to form per-
ceptions. For example, a group of pixels are smoothed,
grouped, and colour classified to generate the position
of a ball. The set of all perceptions forms a model
of the world in which the agent reasons. Reasoning
often involves the agent trying to generate and satisfy
multiple and possibly competing goals. Commonly,
the output of the reasoning stage is an abstract plan

(e.g., a sequence of actions or behaviors) to achieve the
agent’s goals. In the execution stage, the abstract plan
is implemented. Abstract operators (e.g., drive through
the door) are converted into lower level commands for
motors and other actuators.

Figure 1: Generic Architecture

Developing, maintaining, and modifying systems to
control intelligent mobile robots in the real world can
be a daunting task. The problem with most systems
is that they are often limited by the initial design of
the original developer or specifications. These systems
cannot cope with error, and are not flexible enough
to change certain minor aspects of the program. For
example, transforming a soccer playing robot into a
garbage collecting robot may require going through
the control program and to modify perceptions (e.g.,
targets and obstacles), reasoning (e.g., approach a
trash can from any direction vs. approaching a ball
in only certain directions), and execution (e.g.,add an
additional actuator). The problem is that much of the
necessary information is only available implicitly in
the code. We believe a system with an architecture that
utilizes an agent-based approachand makes relevant
information explicit will be intuitive, flexible and
extensible.
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Although the need for an intuitive architecture is inher-
ent to all intelligent mobile robot applications, we will
use examples from the domain of robotic soccer. In
section 2, architectural issues, which may seem abstract
and vague, are made concrete through examples gath-
ered during our participation at previous robotic soccer
competitions. Section 3 describes previous approaches.
Section 4 shows the design of our new architecture.
Section 5 describes how we evaluated our new archi-
tecture. Section 6 concludes the paper.

2 Motivation

Robotic soccer is a great testbed for robotic research
into intelligent mobile robotics. Playing soccer well
requires solutions to many problems that are currently
actively investigated by researchers. For example, a
player has to have a set of skills: real-time control (e.g.
able to kick the ball and accept passes), perception (
e.g. able to see the ball), awareness (e.g. localization),
strategy, coordination and communication (e.g. set up
plays).

In the last two years, the University of Manitoba has
fielded a robotic soccer team ([1]) at these events. Our
participation at these events has made the need for pow-
erful architectures for mobile robots blatantly apparent.
To be successful in the competition, the system must
be adapted to different environments and different op-
ponents.

For example, less reliable actions need to be removed
from a robots set of possible actions to allow a robot to
be more predictable and reliable. In 2003, we would
need to sift through many lines of C++ code to fig-
ure out exactly where to remove a behaviour. Extra
time was needed to test the effect of this change on
the whole system because of the interaction of different
behaviours. Even in the C++ code, it was difficult to
determine what other behaviours depended on a given
behaviour.

Furthermore, the developer would need to be aware of
the subtle nuances of the program such as if two be-
haviours were both applicable, then the first behaviour
that was loaded would be used. This knowledge is
implicit in the C++ code and is not very intuitive for
new developers.

From our experiences at RoboCup, it was clear that an
architecture was needed and the requirements for this
new architecture are as follows:

1. Designing behaviours needs to be simple and in-
tuitive.

2. The goals, assumptions and effects of behaviours
need to be made explicit.

Figure 2: Generic Top-down Architecture

3. Implementation aspects of the decision-making
mechanism that chooses and switches between
behaviours also needs to be made explicit.

4. The process to create and remove behaviours
needs to be simple and flexible.

Even though robotic soccer provided us with real-world
problems and highlighted the need for powerful archi-
tectures, the resulting research is applicable to all intel-
ligent mobile robot domains.

The following section provides background
information on robotics, agent-base approaches,
behavioral control architectures, and other relevant
information.

3 Related Work

There are three main approaches to implementing the
previous architectures: top-down, bottom-up, and hy-
brid approaches.

3.1 Top-Down Architectures

A top-down architecture (see Fig. 2) approach uses
abstraction to decompose the perception, reasoning,
and execution cycle. The motivation for the top-down
architecture is that abstraction can hide details of the
lower levels from the higher levels.

Pure top-down architectures have an explicit world
model and focus on devising one strategy and carrying
it through to the end. These systems are good at
planning and higher level reasoning, but are not
reactive enough for dynamic environments. To
overcome this problem, researchers have developed
extensions to pure top-down architectures, such as
behavior tress. A behaviour tree is a collection of
behaviours organized in a tree. It maps complex
behaviours by branching them into smaller simpler
behaviours. The depth of the tree depends on the
complexity of the most complex behaviour, while
the breadth of the tree depends on the number of
behaviours. Behaviour trees are very useful to help
manage the complexity of one branch from another on
the same level. However, it is difficult to jump from
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Figure 3: Generic Bottom-Up Architecture

one state in a certain level in a branch to a different
state in another level of a different branch.

3.2 Bottom-up architectures

Bottom-up architectures (see Fig. 3) are the opposite of
the top-down architectures. Instead of multiple levels
of abstraction in the perception, reasoning, and execu-
tion stage, bottom up architecture include simple be-
haviors that map perceptions directly to actuator com-
mands (similar to reflexes). More complex behaviors
are created by combining simpler ones. Bottom- up
architectures are able to react quickly to the environ-
ment because of the direct links between sensors and
actuators (e.g., avoid an obstacle). The disadvantage
of bottom-up architectures is that it is often difficult
to know what lower level behaviors are needed and to
predict the interaction of multiple behaviors.

Pure reactive architectures have a set of low-level be-
haviours, which can react to certain situations when
they arise. The main advantage of using these sys-
tems is that they are computationally efficient. The
main disadvantage is that these systems usually have
no mechanism for higher level planning or reasoning.

Brooks subsumption architecture is one well-
known architecture for controlling robots and their
behaviours [2]. It does not use an explicit world model
like pure top-down systems. The main concept of
Brooks subsumption architecture is that the robots
behaviours are designed in a layered approach. Each
layer is an asynchronous module and higher-level
layers have the ability tosubsume(i.e., override)
the lower layers. The higher layer subsumes the
lower layers by either inhibiting the inputs to or
suppressing the outputs of the lower layers. This
makes the architecture robust when new or additional
behaviours are required. One disadvantage of Brooks’
subsumption architecture is that the complexity
of designing the system increases greatly as more
complex higher level layers are added. Nevertheless,
subsumption architectures have been used successfully
in robotic soccer and other tasks [3, 4].

3.3 Hybrid Architectures

Hybrid architecture architectures are a mix between
top-down and bottom- up architectures. These types of

architectures are the most popular because they take
advantage of the strengths of top-down and bottom-up
architectures [5, 6, 7, 8]. However, because they
also inherit the weaknesses of those architectures, the
difficulty lies in finding a reasonable balance between
the two architectures.

In hybrid architecture, some sensors and perceptions
are directly connected to the actuators, whereas others
are processed more extensively. Instead of a complete
world model, the perceptions place the system in a fi-
nite set of states. In other words, the environment can
be mapped to certain states in the system. The rea-
soning system moves the agent into desired states. For
example, thekick to goalbehavior includes three states
(e.g. position behind ball, facing the ball, and kicking
the ball into the goal). One main advantage of using
such architecture is that it is easy to transfer from one
state to another on the same level. For example, if after
approaching the ball the robot is already facing the ball,
then the system will kick the ball immediately.

A popular hybrid architecture is the belief-desire-
intention (BDI) architecture which is being used by
several robotic soccer teams [9]. Belief refers to the
facts that an agent holds to be true about itself, and its
environment. Desire refers to the goals of an agent.
Finally, intention refers to the steps the agent plans
to take to reach its goals or desires. The belief and
desires of a robot help drive its long term planning
strategies. The intention and desires of a robot help
with its ability to improvise.

Decugis and Ferber described another autonomous-
agent hierarchical distributed reactive planning
architecture [10]. Their architecture uses a network of
behaviours with a flexible activation function to switch
behaviours.

Many teams in robotic soccer competitions have used
hybrid approaches [11, 12, 13]. Nonetheless, most of
the crucial information about the agent’s play is only
implicit in the code. One exception is the “German
Team” in the Four Legged League [14]. They devel-
oped a different architecture for their Sony Aibo robot
dogs based on Extensible Agent Behavior Specification
Language (XABSL), to help describe behaviours (see
Fig. 4 for a sample behaviour definition) [15].

The use of XML means that this information is made
explicit to the developer. For example, it is easy to
change the XABSL example above so that the strikers
stay further behind the ball.

4 Design

Our proposed architecture uses some basic object-
oriented (OO) design principles. Behaviours that
share similar qualities with each other are grouped
together and common information or functions can

2nd International Conference on Autonomous Robots and Agents
December 13-15, 2004  Palmerston North, New Zealand

54



Figure 4: Sample XABSL striker definition

be inherited. For example, defenders may need to
know the line of shot from the ball to our own net.
From a design perspective, this allows us to use
inheritance to simplify the work that needs to be
done. However, properOO principles cannot be the
panacea to our problems. Some behaviours may need
to be modified quickly and dealing with a complex
inheritance tree may not be intuitive enough. For
example, in changing a behaviour of a defender to
a goalkeeper, the developer needs to be aware of
certain restrictions placed on a goalkeeper. (e.g. the
goalkeeper is not expected to come far away from its
own goal.) Adding this behaviour is not as simple
as copying the behaviour over to the new group of
behaviours. Interaction between this behaviour and the
existing behaviours can be severely degrade the overall
performance. The trigger to execute this behaviour
may be too rigid (e.g. a simple if-statement is not
flexible enough). In a complex system, maintaining a
complex if-structure is not ideal. Thus, our proposed
architecture proposes to deal with this issue by
allowing the behaviour to discover how applicable it
is to a particular scenario. With our architecture, the
developer can design the actions for the behaviour, and
easily integrate the behaviour(see Fig. 5). Currently,
we are in the process of developing a more complex
architecture that uses XML to represent important
information.

Figure 5: Proposed Architecture

Complex behaviours are represented as behaviour
trees. The reasoning behind this is to create a system
where it would be easy to add, remove, or modify
complex behaviours. The leaf nodes of the tree
communicate to the command generator to control the
actuators (reflex behaviours). The expected transition
from one behaviour to the next is mainly modelled via
finite state machines.

From a high level appearance our architecture has two
major levels for our behaviours. Level 1 are critical
behaviours that will override level 2 behaviours. This
override system is seen in other architectures such as
the Brooks’ subsumption architecture [2].

Level 1 behaviours are simple and critical behaviours
that follow strict guidelines. Thus, they are mostly a
collection of finite state machines loosely connected
with each other by simple state conditions. These be-
haviours are intended for the designer to have full con-
trol over behaviour switching using simple transitional
conditions. In our model domain, these behaviours are
used for system diagnostics and obeying the referee
commands such as free kicks and penalty kicks.

Level 2 behaviours compose approximately 95 percent
of the robot’s normal dynamic functions. Each
behaviour is a node in the main behaviour tree. In our
domain, we divided our behaviour tree further into 4
levels (see Fig. 6): Field strategy, role differentiation,
role strategy, lower level behaviours. More complex
behaviours are placed closer to the top of the tree
vis-a-vissimpler, reflexive behaviours are closer to the
bottom. Using a hierarchical approach not only allows
us to control the complexity of the behaviours but it
has proven to be flexible enough to allow deliberative
and opportunistic actions [8].

Figure 6: Level 2 dynamic behaviours [16]

However, the core of our new hybrid architecture is
our task manager, a main component of the planner
described in Fig. 5 and Fig. 7, which we use to control
the behaviors of the robot. All behaviors in the system
have two additional functions:calc applicability(state)
andcalc reward(state). These functions are quick ap-
proximations of the assumptions and effects of a be-
haviour. For example, to determine whether a given
behaviour’s assumptions are met may require the be-
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Figure 7: Planner: Task Manager

haviour to plan a complete path to the goal destina-
tion, which is computationally expensive. Instead, the
calc applicability(state)function estimates this appli-
cability by the distance of the robot to the goal position.

The function calc applicability(state) returns how
close the current world state matches the assumptions
of the behavior. These values are modelled as fuzzy
sets [17]. For example, the behaviourshoot-goal
returns a high applicability if the robot and the ball
are lined up and close to the opponent’s goal. The
function calc reward(state) returns the expected
reward should the behavior succeed. For example,
the score- goalreturns a reward of 0.9 whereasblock
opponentreturns 0.3. Thecalc applicability(state)and
calc reward(state)functions are limited in the amount
of processing that they are allowed to do. They are
expected to return very quickly.

The task manager calculates the applicability and
reward for all enabled behaviours and then based on
the current strategy selects a behaviour. This behaviour
is then activated and executed until the next time step.
To avoid the common problem of oscillating between
behaviours, the task manager enforces a minimum
threshold for changing from one behaviour to another.
For future research, learning can be incorporated into
the behaviours and task planner. Behaviours can
adjust the value of thecalc applicability(state)and
calc reward(state)depending on the success of the
behaviour. Other researchers are looking into learning
with their research as well [18].

Our goal to make information explicit must be care-
fully balanced with the need for an intuitive architec-
ture. Obviously, the most extensible architecture is a
description of a C++ program in XML. However, the
resulting system would be even more difficult to under-
stand than the original C++ code. Therefore, the type
and amount of information that is expressed explicitly
must be carefully controlled.

The sensor and perception processing part of the sys-
tem is heavily data driven and a number of principle

candidates for adaptation are easily apparent. For ex-
ample, it should be trivial to change the colour of the
ball or the number of opponents. Therefore, the fol-
lowing information is expressed in XML: number and
types of objects, colours of the objects in our 15 pa-
rameter colour model, minimum and maximum sizes
and aspect ratios for objects.

Similarly, the XML description of the reasoning com-
ponent includes a description of the hierarchy of be-
haviours, a case-based description of the assumptions
and the effects of a behaviour. Instead of describing
maximum applicability and reward, the XML descrip-
tion includes a series of sample scenarios and a their
associated applicabilities and rewards. The system au-
tomatically interpolates for states that do not match a
given scenario.

The XML description of the execution module includes
gains for the motor controllers (we use a CMAC with
64 parameters to determine motor outputs for desired
control inputs) as well as the minimum distance be-
tween obstacles and the robot. For example, ourblock-
shot-on-goalbehaviour ignores other obstacles. We
are currently still developing this XML aspect of our
architecture.

5 Evaluation

Some aspects of an architecture can be easily evaluated
(i.e., average runtime of the control cycle). However,
measuring the extendability or flexibility of an archi-
tecture is difficult since there are no known quantitative
measures for these features of an architecture. Fur-
thermore, concepts such as flexibility are subjective in
themselves.

Therefore, we use anecdotal evidence and a series of
challenge tasks will be used to evaluate these features
of the architecture. We measure the time it takes for
a developer to implement the following tasks using
this architecture: (a) path tracking, (b) treasure hunt,
(c) obstacle run, (d) goal scoring, (e) ball passing, and
(f) playing soccer.

Preliminary results from our current system are encour-
aging. In 2004, the RoboBisons used a configuration
file to describe the tree structure of the behaviours and
the maximum applicability and reward for each indi-
vidual behaviour. Even making this simple change had
a huge impact. We estimate that we saved several hours
in the 2004 competition which allowed us to focus on
other more important problems. Furthermore, it was
easy to compare the influence of different behaviours
since their maximum applicabilities were readily avail-
able to the developer.
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6 Conclusions

This paper describes the motivation and design of a
novel architecture for intelligent mobile robots. The
agent based architecture is easier to extend, adapt, and
more intuitive since the relevant information is explic-
itly available to the developer.

Using such an architecture allows developers to create
behaviours quickly and easily. The flexibility of
the architecture should allow developers to modify
the behaviours to suit their needs. The immediate
application of this novel architecture is in future mobile
robotic competitions such as RoboCup and FIRA,
but we believe many other applications for intelligent
mobile robots will benefit from such an architecture.
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